能判定一个四边形是菱形的条件是( )
(A)对角线相等且互相垂直 (B)对角线相等且互相平分
(C)对角线互相垂直 (D)对角线互相垂直平分
4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组( )
(A) (B)
(C) (D)
如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.
(1)若∣x+2y-5∣+∣2x-y∣=0,试分别求出1秒钟后,A、B两点的坐标.
(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.
(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?
请写出你的结论并说明理由.
已知:在△ABC和△XYZ中,∠A=40°,∠Y+∠Z=95°,将△XYZ如图摆放,使得∠X的两条边分别经过点B和点C.
(1)当将△XYZ如图1摆放时,则∠ABX+∠ACX= 度;
(2)当将△XYZ如图2摆放时,请求出∠ABX+∠ACX的度数,并说明理由;
(3)能否将△XYZ摆放到某个位置时,使得BX、CX同时平分∠ABC和∠ACB?请直接写出你的结论: .
某校师生积极为汶川地震灾区捐款捐物,在得知灾区急需帐篷后,立刻到当地的一家帐篷厂采购,帐篷有两种规格,可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人居住. 学校准备租用甲、乙两种型号的卡车共20辆将所购帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.
(1)求该校采购了多少顶3人小帐篷,多少顶10人住的大帐篷;
(2)学校应如何安排甲、乙两种型号的卡车可一次性将这批帐篷运往灾区?有几种方案?
如图,AD平分∠BAC,∠EAD=∠EDA.
(1)∠EAC与∠B相等吗?为什么?
(2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E的度数.