在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征。
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的: 22×23=25,23×24=27,22×26=28,…
2m×2n=2m+n,…am×an=am+n(m、n都是正整数)。探索问题:
(1)比较下列各组数据的大小:
① , ② , ③ , ④ ,…。
(2)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;并用已学的数学知识说明你发现结论的正确性.
(3)试用(2)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;
某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共有10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.
⑴请你帮助学校设计所有可行的租车方案;
⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?
(1)如图,已知,求的值;
(2)如果,那么成立吗?为什么?
我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:
一般地,如果 那么a+c b+d.(用“>”或“<”填空)你能应用不等式的性质证明上述关系式吗?
一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看。如图,是一个参加空姐选拔活动的选手情况,那么她应该穿多高的鞋子好看?(精确到1cm)(参考数据:黄金分割数:)
解方程: