甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球、1个黄球和1个蓝球;乙盒中有1个白球、2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中意摸取一球为蓝球的概率的2倍.
(1)求乙盒中蓝球的个数;
(2)从甲、乙两盒中分别任意摸取一球,利用列表或画树状图法求这两球均为蓝球的概率.
如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2:(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.
化简,求值: ),其中=.
解不等式组 ,并判断是否该不等式组的解.
两个反比例函数()和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,下列命题:
①△ODB与△OCA的面积相等;②四边形PAOB的面积总等于;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点;⑤若延长OA交的图像于点E,则的值为,其中真命题有 个.
如图,DE是△ABC的中位线,M、N分别是BD、CE的中点,则△ADE与四边形BCNM的面积之比等于 .