7年级(1)班的同学到水库调查了解今年的汛情.水库一共有10个泄洪闸,现在水库水位已超过安全线,上游的河水仍以一个不变的速度流入水库. 同学们经过一天的观察和测量,做了如下记录:上午打开一个泄洪闸,在2小时内水位继续上涨了0.06米;下午再打开2个泄洪闸后,4小时内水位下降了0.1米.目前水位仍超过安全线1.2米.
(1)求河水流入使水位上升速度及每个闸门泄洪可使水位下降速度;
(2)如果共打开5个泄洪闸,还需几个小时水位降到安全线?
(3)如果防汛指挥部要求在6小时内使水位降到安全线,应该一共打开几个泄洪闸?
如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE, 过D作DG∥AC交BC于G.
求证:(1) △GDF≌△CEF;
(2)△ABC是等腰三角形.
如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1) AE与FC会平行吗?说明理由.
(2)AD与BC的位置关系如何? 说明理由.
(3)BC平分∠DBE吗? 说明理由.
为增强中学生体质,开展了“每天锻炼一小时”的体育活动.4月份对全市中小学生进行体质监测评价,专家组随机抽查了某区若干名初中学生. 我们对专家的测评数据作了适当处理,并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:
(1)在这次监测评价中,一共抽查了 名学生,如果全市有10万名初中生,那么全市初中生中,可以达到优秀的学生约有 人;
(2)请将两幅统计图补充完整.(补全直方图及数据)
良好人数 ;
良好率 ;
不及格率 .
已知△ABC的三边满足,试判断△ABC的形状.
如图,在正方形网格上的一个△ABC.
(1)作△ABC关于直线MN的对称图形(不写作法);
(2)以P为一个顶点作与△ABC全等的三角形(规定点P与点B对应,另两顶点都在图中网格交点处),则可作出 个三角形.