已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.
(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m= .
(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴
翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图3
中补全小贝同学翻折后的图形;②请你根据①中的图形,求出m的取值范围,并简要说明理
由.
如图,以OA1=2为底边做等腰三角形,使得第三个顶点C1恰好在直线y=x+2上,并以此向左、右依次类推,作一系列底边为2,第三个顶点在直线y=x+2上的等腰三角形.
(1)请你通过计算说明:底边为2,顶点在直线y=x+2上且面积为21的等腰三角形位于图
中什么位置?
(2)求证:y轴右侧的每一个等腰三角形的面积都等于前后两个以腰为一边的三角形面积之和的一半(如:S右1=,S右2=).
(3)过D1、A1、C2三点画抛物线.问在抛物线上是否存在点P,使得△PD1C2的面积是△C1OD1与△C1A1C2面积和的.若存在,请求出点P的坐标;若不存在,请说明理由.
如图,菱形ABCD的边长为30 cm,∠A=120°.点P沿折线A-B-C-D运动,速度为1 cm/s;点Q沿折线A-D-C- B运动,速度为 cm/s.当一点到达终点时,另一点也随即停止运动.若点P、Q同时从点A出发,运动时间为t s.
(1)设△APQ面积为s cm2,求s与t的函数关系式,并写出自变量t的取值范围;
(2)当△APQ为等腰三角形时,直接写出t的值.
如图,在直角坐标平面中,O为原点,A(0,6),B(8,0)。点P从点A出发,以每秒2个单位长度的速度沿射线AO方向运动,点Q从点B出发,以每秒一个单位长度的速度沿x轴正方向运动,P,Q两动点同时出发,设移动时间为t(t>0)秒.
(1)在点P,Q的运动过程中,当点P在AO的延长线上时,若△POQ与△AOB相似,求t的值;
(2)如图2,当直线PQ与线段AB交于点M,且时,求直线PQ的解析式;
(3)以点O为圆心,OP长为半径画圆⊙O,以点B为圆心,BQ长为半径画⊙B,讨论⊙O和⊙B的位置关系,并直接写出相应t的取值范围.
某企业为手机产业基地提供手机配件,受人民币走高的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
价格y1(元/件) |
56 |
58 |
60 |
62 |
64 |
66 |
68 |
70 |
72 |
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为100元,生产每件配件的人力成本为5元,其它成本3元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式(1≤x≤9,且x取整数),10至12月的销售量p2(万件)与月份x满足函数关系式(10≤x≤12,且x取整数)。求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1月,每件配件的原材料价格比去年12月上涨6元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时1月份销售量在去年12月的基础上减少8a%,这样,在保证1月份上万件配件销量的前提下,完成了利润17万元的任务,请你计算出a的值。
小明家所在居民楼的对面有一座人厦AB=80米.为测量这座居民楼与大厦之间
的距离,小明从自家的窗户C处测得大厦项部A的仰角为37°,大厦底部B的俯角为48°.
求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)
(参考数据:sin37°=,tan37°=,sin48°=,tan48°=)