李明投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
⑴设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(4分)⑵如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3分)⑶根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)(3分)
已知: 如图, AB是⊙O的直径,⊙O过AC的中点D, DE切⊙O于点D, 交BC于点E.
(1)求证: DE⊥BC;(5分)
(2)如果CD=4,CE=3,求⊙O的半径.(5分)
如图,放置在水平桌面上的台灯的灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°. 使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)
如图,等边三角形ABC,点E是AB上一点,点D在CB的延长线上,且ED=EC,EF∥AC交BC于点F.
(1)试说明四边形AEFC是等腰梯形;(4分)(2)请判断AE与DB的数量关系,并说明你的理由.(4分)
抛物线交轴于A、B两点,交轴于点,对称轴为直线,且A、C两点的坐标分别为、.
(1)求抛物线和直线BC:的解析式;(6分)
(2)当时,直接写出x的取值范围.(2分)
4张不透明的卡片,除正面画有不同的图形外,其它均相同,把这4张卡片洗匀后,正面向下放在桌上。
⑴从这4张卡片中随机抽取一张,它是轴对称图形但不是中心对称图形的概率是多少?(4分)
⑵从这4张卡片中随机抽取2张,利用列表或画树状图计算:2张卡片都是中心对称图形的概率是多少?(4分)