反比例函数y=的图象位于 ( )
A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限
矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线与BC边相交于D点.
(1)求点D的坐标;
(2)若抛物线经过点A,求此抛物线的表达式及对称轴;
(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为坐标轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出点M的坐标和符合条件的点P的坐标.
(4)当(3)中符合条件的△POM面积最大时,过点O的直线将其面积分为∶两部分,请直接写出直线的解析式
为改善城市生态环境,实现城市生活垃圾减量化、资源化、无害化的目标,湖州市决定从2010年12月1日起,在全市部分社区试点实施生活垃圾分类处理. 某街道计划建造垃圾初级处理点20个,解决垃圾投放问题. 有A、B两种类型处理点的占地面积、可供使用居民楼幢数及造价见下表:
类型 |
占地面积/m2 |
可供使用幢数 |
造价(万元) |
A |
15 |
18 |
1.5 |
B |
20 |
30 |
2.1 |
已知可供建造垃圾初级处理点占地面积不超过370m2,该街道共有490幢居民楼.
(1)满足条件的建造方案共有几种?写出解答过程.
(2)通过计算判断,哪种建造方案最省钱,最少需要多少万元.
如图,以线段为直径的⊙交线段于点,点是弧AE的中点,交于点,°,,.
(1)求的度数;
(2)求证:BC是⊙的切线;
(3)求MD的长度.
如图,是四边形的对角线上两点,.
求证:(1);
(2)四边形是平行四边形.
如图,已知线段及∠O.
(1)只用直尺和圆规,求作△ABC,使BC,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法);
(2)在△ABC中作BC的中垂线分别交AB、BC于点E、F,如果∠B=30°,求△BEF与△ABC的面积之比.