如图.在△ABC中.D是AB的中点.E是CD的中点.过点C作CF∥AB交AE的延长线于点F.连结BF。
(1)求证:DB=CF;
(2)在△ABC中添加一个条件: ,使四边形BDCF为 (填:矩形或菱形)。
如图,点B的坐标为(4,3),过点B作x轴的垂线垂足为A,交反比例函数(x>0)图象于点C;连结OB交反比例函数(x>0) 图象于点D,已知BC∶AB=2∶3。
(1)求k的值
(2)求点D的坐标。
解方程:.
计算:
已知⊙P的半径为1,圆心P在抛物线y=x2-1上运动,当⊙P与x轴相切时,圆心P的坐标为 .
如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形的面积为100,小正方形的面积为4,若用x,y表示直角三角形的两直角边(x>y),下列4个说法:
①;②x-y=2;③;④x+y=14. 其中说法正确的是 (只填序号)