如图①,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
已知△ABC中,∠A<∠B<∠C
(1)利用直尺和圆规,在图②中作出△ABC的自相似点P(不写作法,但需保留作图痕迹);
(2)若△ABC的三内角平分线的交点P是该三角形的自相似点,求该三角形三个内角的度数.
某校九年级学生共600人,为了解这个年级学生的体能,从中随机抽取部分学生进行1分钟的跳绳测试,并指定甲,乙,丙,丁四名同学对这次测试结果的数据作出整理,下图是这四名同学提供的部分信息:
甲:将全体测试数据分成6组绘成直方图(如图).
乙:跳绳次数不少于105次的同学占96%.
丙:第①,②两组频率之和为0.12,且第②组与第⑥组频数都是12.
丁:第②,③,④组的频数之比为4:17:15.
根据这四名同学提供的材料,请解答如下问题:
(1)这次跳绳测试共抽取多少名学生?
(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?
写出一个只含字母x的代数式,要求(1)要使此代数式有意义,字母x必须取全体大于1的实数,(2)此代数式的值恒为负数.
为负实数)的均可 |
如图,如图,⊙O中,半径CO垂直于直径AB,D为OC的中点,过D作弦EF∥AB,则∠CBE= .
如图,已知直角三角形OAB的直角边OA在x轴上,双曲线与直角边AB交于点C,与斜边OB交于点D,,则△OBC的面积为 .
一张圆桌旁有四个座位,甲先坐在如图所示的座位上,乙,丙,丁三人随机坐到其他三个座位,则甲与乙不相邻而坐的概率为 .