如图所示,直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3,点M是BC的中点,点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动,在点P、Q的运动过程中,以PQ为边作等边△EPQ,使它与梯形ABCD在射线BC的同侧,点P、Q同时出发,点P返回到点M时停止运动,点Q也随之停止,设点P、Q运动的时间是t秒(t>0)。
(1)设PQ的长为y,写出y与t之间的函数关系式(写出t的取值范围)。
(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积。
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由。
随州购物中心准备采购数量相同的甲、乙两种衬衫,每件以相同的售价x元出售,其中50≤x≤120,甲种衬衫每件进价为30元,当每件定价为50元时,月销售量为120件,每件售价不超过100元时,价格每上涨1元,每件销量减少1件;售价超过100元时,超过100元的部分,每上涨1元,销量减少2件,销售甲种衬衫的月利润为y1(元),销售乙种衬衫的月利润为y2(元),且y2与x的函数关系为y2=,销售这两种衬衫的月利润W(元)是y1与y2的和。
(1)求y1关于x的函数关系式。
(2)求出W关于x的函数关系式。
(3)商场经理如何采购,如何定价,才能使每月获得的总利润W最大?说明理由。
如图,河边有一斜坡AB,坡度i=4:3,AB=10m,小明站在坡上的G点处,看见正前方的河里有一只小船C,此时小船C的俯角为30°,若小明的眼睛与地面的距离DG是1.5m,BG=1m,BG平行于CA所在的直线(CA、DC、AB在同一平面内),则CA的长是多少米?(结果精确到0.1m,参考数据≈1.7)
如图,AB为⊙O的直径,PQ切⊙O于点T,AC⊥PQ于点C,交⊙O于点D。
(1)求证:AT平分∠BAC。
(2)若AD=2,TC=,求⊙O的半径。
进行防汛期后,某地对河堤进行了加固,该地驻军在河堤加固的工程出色完成了任务,下面是记者与驻军工程指挥官的一段对话:
记者:你们是用了9天完成了4800m长的大坝加固任务的?
指挥官:是的,我们加固600m后,采用新的加固模式,这样每天加固长度是原来的2倍。
通过这段对话,请你求该地驻军原来每天加固的米数。
“六一”儿童节,小明与小亮受邀到科技馆担任义务讲解员,他们俩各自独立从A区(时代辉煌)、B区(科学启迪)、C区(智慧之光)、D区(儿童世界)这四个主题展区随机选择一个为参观者服务。
(1)请用列表法或画树状图法说明当天小明与小亮出现在各主题展区担任义务讲解员的所有可能情况(用字母表示)。
(2)求小明和小亮只单独出现在C区(智慧之光)、D区(儿童世界)两个主题展区中担任义务讲解员的概率。