满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC=10cm,BC=12cm,点D是BC边的中点.点...

如图,在△ABC中,AB=AC=10cm,BC=12cm,点D是BC边的中点.点P从点B出发,以acm/s(a>0)的速度沿BA匀速向点A运动;点Q同时以1cm/s的速度从点D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为ts.

(1)若a=2,△BPQ∽△BDA,求t的值;

(2)设点M在AC上,四边形PQCM为平行四边形.

①若a=,求PQ的长;

②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出a的值;若不存在,请说明

理由.

说明: 6ec8aac122bd4f6e

 

【解析】 (1)△ABC中,AB=AC=10,BC=12,D是BC的中点,∴BD=CD=BC=6。 ∵a=2,∴BP=2t,DQ=t。∴BQ=BD-QD=6-t。 ∵△BPQ∽△BDA,∴,即,解得:。 (2)①过点P作PE⊥BC于E, ∵四边形PQCM为平行四边形, ∴PM∥CQ,PQ∥CM,PQ=CM。 ∴PB:AB=CM:AC。 ∵AB=AC,∴PB=CM。∴PB=PQ。 ∴BE=BQ=(6-t)。 ∵a=,∴PB=t。 ∵AD⊥BC,∴PE∥AD。∴PB:AB=BE:BD,即。 解得,t=。 ∴PQ=PB=t=(cm)。 ②不存在.理由如下: ∵四边形PQCM为平行四边形,∴PM∥CQ,PQ∥CM,PQ=CM。 ∴PB:AB=CM:AC。 ∵AB=AC,∴PB=CM,∴PB=PQ。 若点P在∠ACB的平分线上,则∠PCQ=∠PCM, ∵PM∥CQ,∴∠PCQ=∠CPM。∴∠CPM=∠PCM。 ∴PM=CM。∴四边形PQCM是菱形。∴PQ=CQ。 ∴PB=CQ。 ∵PB=at,CQ=BD+QD=6+t,∴PM=CQ=6+t,AP=AB-PB=10-at,且 at=6+t①。 ∵PM∥CQ,∴PM:BC=AP:AB,∴,化简得:6at+5t=30②。 把①代入②得,t=。 ∴不存在实数a,使得点P在∠ACB的平分线上。 【解析】等腰三角形的性质,相似三角形的判定和性质,平行四边形的性质,平行的性质,菱形的判定和性质,反证法。 【分析】(1)由△ABC中,AB=AC=10,BC=12,D是BC的中点,根据等腰三角形三线合一的性质, 即可求得BD与CD的长,又由a=2,△BPQ∽△BDA,利用相似三角形的对应边成比例,即可求得t的值。 (2)①首先过点P作PE⊥BC于E,由四边形PQCM为平行四边形,易证得PB=PQ,又由平行 线分线段成比例定理,即可得方程,解此方程即可求得答案。 ②用反证法,假设存在点P在∠ACB的平分线上,由四边形PQCM为平行四边形,可得四边形PQCM是菱形,即可得PB=CQ,PM:BC=AP:PB,及可得方程组,解此方程组求得t值为负,故可得不存在。
复制答案
考点分析:
相关试题推荐

如图,菱形ABCD中,∠B=60º,点E在边BC上,点F在边CD上.

(1)如图1,若E是BC的中点,∠AEF=60º,

求证:BE=DF;

(2)如图2,若∠EAF=60º,

求证:△AEF是等边三角形.

说明: 6ec8aac122bd4f6e

 

查看答案

甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系.请根据图象,解答下列问题:

(1)线段CD表示轿车在途中停留了      h;

(2)求线段DE对应的函数解析式;

(3)求轿车从甲地出发后经过多长时间追上货车.

说明: 6ec8aac122bd4f6e

 

查看答案

四张扑克牌的点数分别是2、3、4、8,将它们洗匀后背面朝上放在桌面上.

(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;

(2)从中先随机抽取一张牌,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.

 

查看答案

如图,某测量船位于海岛P的北偏西60º方向,距离海岛100海里的A处,它沿正南方向航行一段时间后,到达位于海岛P的西南方向上的B处.求测量船从A处航行到B处的路程(结果保留根号).

说明: 6ec8aac122bd4f6e

 

 

查看答案

如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB、CD的上方,求AB和CD间的距离.

说明: 6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.