满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴...

如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.

(1)①直接写出点E的坐标:  

②求证:AG=CH.

(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.

(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.

说明: 6ec8aac122bd4f6e

 

【解析】 (1)① (1,)。 ②证明:∵四边形OABC是矩形,∴CE=AE,BC∥OA。∴∠HCE=∠GAE。 ∵在△CHE和△AGE中,∠HCE=∠GAE, CE=AE,∠HEC=∠G EA, ∴△CHE≌△AGE(ASA)。∴AG=CH。 (2)连接DE并延长DE交CB于M,连接AC, 则由矩形的性质,点E在AC上。 ∵DD=OC=1=OA,∴D是OA的中点。 ∵在△CME和△ADE中, ∠MCE=∠DAE, CE=AE,∠MEC=∠DEA, ∴△CME≌△ADE(ASA)。∴CM=AD=2-1=1。 ∵BC∥OA,∠COD=90°,∴四边形CMDO是矩形。∴MD⊥OD,MD⊥CB。 ∴MD切⊙O于D。 ∵HG切⊙O于F,E(1,),∴可设CH=HF=x,FE=ED==ME。 在Rt△MHE中,有MH2+ME2=HE2,即(1-x)2+()2=(+x)2,解得x=。 ∴H(,1),OG=2-。∴G(,0)。 设直线GH的解析式是:y=kx+b, 把G、H的坐标代入得:,解得:。 ∴直线GH的函数关系式为。 (3)连接BG, ∵在△OCH和△BAG中, CH=AG,∠HCO=∠GAB,OC=AB, ∴△OCH≌△BAG(SAS)。∴∠CHO=∠AGB。 ∵∠HCO=90°,∴HC切⊙O于C,HG切⊙O于F。 ∴OH平分∠CHF。∴∠CHO=∠FHO=∠BGA。 ∵△CHE≌△AGE,∴HE=GE。 ∵在△HOE和△GBE中,HE=GE,∠HEO=∠GEB,OE=BE, ∴△HOE≌△GBE(SAS)。∴∠OHE=∠BGE。21世纪教育网 ∵∠CHO=∠FHO=∠BGA,∴∠BGA=∠BGE,即BG平分∠FGA。 ∵⊙P与HG、GA、AB都相切,∴圆心P必在BG上。 过P做PN⊥GA,垂足为N,则△GPN∽△GBA。∴。 设半径为r,则,解得。 答:⊙P的半径是. 【解析】一次函数综合题,矩形的性质和判定,全等三角形的性质和判定,切线的判定和性质,勾股定理,待定系数法,直线上点的坐标与方程的关系,角平分线的判定和性质,相似三角形的判定和性质。 【分析】(1))①根据矩形的性质和边长即可求出E的坐标。  ②推出CE=AE,BC∥OA,推出∠HCE=∠EAG,证出△CHE≌△AGE即可。 (2)连接DE并延长DE交CB于M,求出DD=OC=OA,证△CME≌△ADE,推出四边形CMDO是矩形,求出MD切⊙O于D,设CH=HF=x,推出(1-x)2+()2=(+x)2,求出H、G的坐标,设直线GH的解析式是y=kx+b,把G、H的坐标代入求出即可。 (3)连接BG,证△OCH≌△BAG,求出∠CHO=∠AGB,证△HOE≌△GBE,求出∠OHE=∠BGE,得出BG平分∠FGA,推出圆心P必在BG上,过P做PN⊥GA,垂足为N,根据△GPN∽△GBA,得出,设半径为r,代入求出即可。
复制答案
考点分析:
相关试题推荐

已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

说明: 6ec8aac122bd4f6e

 

查看答案

如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.

(1)求证:AC平分BAD;

(2)若AC=6ec8aac122bd4f6e,CD=2,求⊙O的直径.

说明: 6ec8aac122bd4f6e

 

查看答案

如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据6ec8aac122bd4f6e≈1.41,6ec8aac122bd4f6e≈1.73)

说明: 6ec8aac122bd4f6e

 

查看答案

为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青

 

年志愿者的支援,每日比原计划多种6ec8aac122bd4f6e,结果提前4天完成任务,原计划每天种多少棵树?

 

查看答案

如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.

说明: 6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.