满分5 > 初中数学试题 >

如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的...

如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以说明: 6ec8aac122bd4f6ecm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.

(1)当P异于A.C时,请说明PQ∥BC;

(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?

说明: 6ec8aac122bd4f6e

 

【解析】 (1)∵四边形ABCD是菱形,且菱形ABCD的边长为2, ∴AB=BC=2,∠BAC=∠DAB。 又∵∠DAB=60°,∴∠BAC=∠BCA=30°。 如图1,连接BD交AC于O。 ∵四边形ABCD是菱形, ∴AC⊥BD,OA=AC。 ∴OB=AB=1。∴OA=,AC=2OA=2。 运动ts后,AP=t,AO=t,∴。 又∵∠PAQ=∠CAB,∴△PAQ∽△CAB.∴∠APQ=∠ACB. ∴PQ∥BC. (2)如图2,⊙P与BC切于点M,连接PM,则PM⊥BC。 在Rt△CPM中,∵∠PCM=30°,∴PM=。 由PM=PQ=AQ=t,即=t,解得t=, 此时⊙P与边BC有一个公共点。 如图3,⊙P过点B,此时PQ=PB, ∵∠PQB=∠PAQ+∠APQ=60° ∴△PQB为等边三角形。∴QB=PQ=AQ=t。∴t=1。 ∴当时,⊙P与边BC有2个公共点。 如图4, ⊙P过点C,此时PC=PQ,即 =t ∴t=。 ∴当1≤t≤时,⊙P与边BC有一个公共点。 当点P运动到点C,即t=2时,Q、B重合,⊙P过点B, 此时,⊙P与边BC有一个公共点。 综上所述,当t=或1≤t≤或t=2时,⊙P与菱形ABCD的边BC有1个公共点;当时,⊙P与边BC有2个公共点。 【解析】直线与圆的位置关系,菱形的性质,含30°角直角三角形的性质,相似三角形的判定和性质,平行的判定,切线的性质,等边三角形的判定和性质。 【分析】(1)连接BD交AC于O,构建直角三角形AOB.利用菱形的对角线互相垂直、对角线平分对角、邻边相等的性质推知△PAQ∽△CAB;然后根据“相似三角形的对应角相等”证得∠APQ=∠ACB;最后根据平行线的判定定理“同位角相等,两直线平行”可以证得结论。 (2)分⊙P与BC切于点M,⊙P过点B,⊙P过点C和点P运动到点C四各情况讨论即可。
复制答案
考点分析:
相关试题推荐

)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).

(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;

(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.

说明: 6ec8aac122bd4f6e

 

查看答案

如图1,A.D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.

(1)求A.B两点的坐标;

(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.

说明: 6ec8aac122bd4f6e

 

查看答案

某开发商进行商铺促销,广告上写着如下条款:

  投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:

  方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.

  方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.

(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=说明: 6ec8aac122bd4f6e×100%)

(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?

 

查看答案

如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A.B.C.D四个顶点正好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).

(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;

(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?

说明: 6ec8aac122bd4f6e

 

查看答案

初三(1)班共有40名同学,在一次30秒打字速度测试中他们的成绩统计如表:

说明: 6ec8aac122bd4f6e

(1)将表中空缺的数据填写完整,并补全频数分布直方图;

(2)这个班同学这次打字成绩的众数是    个,平均数是    个.

说明: 6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.