如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和
矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的
距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)求抛物线的解析式;
(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数
关系且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?
在锐角△ABC中,BC=5,sinA=.
(1)如图1,求△ABC外接圆的直径;
(2)如图2,点I为△ABC的内心,BA=BC,求AI的长。
如图,在平面直角坐标系中,点A、B的坐标分别为(-1,3)、(-4,1),先
将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为(0,2),在将线段A1B1
绕远点O顺时针旋转90°得到线段A2B2,点A1的对应点为点A2.
(1)画出线段A1B1、A2B2;
(2)直接写出在这两次变换过程中,点A经过A1到达A2的路径长.
一个口袋中有4个相同的小球,分别与写有字母A、B、C、D,随机地抽出一
个小球后放回,再随机地抽出一个小球.
(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果;
(2)求两次抽出的球上字母相同的概率.
如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.
在平面直角坐标系中,直线y=kx+3经过点(-1,1),求不等式kx+3<0的解集.