“保护环境,人人有责”,为了更好的治理环境,保护大运河,宿迁污水处理厂决定购买A、B两型污水处理设备,共10台,其信息如下表:
|
单价(万元/台) |
每台处理污水量(吨/月) |
A型 |
12 |
240 |
B型 |
10 |
200 |
(1)设购买A型设备x台,所需资金共为W万元,每月处理污水总量为y吨,试写出W与x,y与x的函数关系式.
(2)经预算,污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金?
已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连结DE,DE=.
(1)求证:;
(2)求EM的长;
(3)求sin∠EOB的值.
如图所示,放在直角坐标系中的正方形ABCD的边长为4,现做如下实验:转盘被划分为三个相同的扇形,并分别标有数字,2,3,先后转动两次转盘,转盘停止后,指针所指的数字作为直角坐标系中M点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指在界线上,则重新转动转盘.
(1)请你用树状图或列表的方法,求M点落在正方形ABCD面上(含内部与边界)的概率.
(2)将正方形ABCD进行怎样的平移,可使M点落在正方形ABCD面上(含内部与边界)的概率恰好等于?
如图, 已知在平面直角坐标系中,一次函数(k≠0)的图象与反比例函数(m≠0)的图象相交于A、B两点,且点B的纵坐标为,过点A作AC⊥x轴于点C, AC=1,OC=2.
求:(1)求反比例函数和一次函数的关系式;
(2)直接写出反比例函数值大于一次函数值时x的取值范围.
某校为了了解九年级学生体育测试成绩情况,抽查了一部分考生的体育测试成绩,甲、乙、丙三位同学将抽查出的学生的测试成绩按A(优秀)、B(良好)、C(及格)、D(不及格)四个等级进行统计,并将统计结果绘制成如下统计图(如图).甲同学计算出成绩为C的频率是0.2,乙同学计算出成绩为A、B、C的频率之和为0.96,丙同学计算出成绩为A的频数与成绩为C的频数之比为6:5.结合统计图回答下列问题:
(1)这次抽查了多少人?
(2)所抽查学生体育测试成绩的中位数在哪个等级内?
(3)若该校九年级学生共有720人,请你估计这次体育测试成绩为优秀的学生共有多少人?
【解析】(1)根据甲同学计算出成绩为C的频率是0.2和由条形统计图得到的成绩为C的同学的频数求得学生的总数即可;
(2)根据求得的抽查的学生总数确定中位数的具体位置,进而可以求得该组数据的中位数;
(3)用成绩为优秀小组的学生的频率的和乘以该校九年级学生总数即可求得测试成绩为优秀的学生总数.
已知:如图,点C、E均在直线AB上.
(1)在图中作∠FEB,使∠FEB=∠DCB(保留作图痕迹,不写作法);
(2)请说出射线EF与射线CD的位置关系.