如图,在等腰梯形ABCD中,AD∥BC,AB=AD=DC,AC = BC。则∠B的度数是:
A. 45° B. 60° C. 72° D. 80°
关于函数y= 3x+1,下列结论正确的是
A.图象必经过点(-2,5) B.y随x的增大而减小
C.当x>—时,y>0 D.图象经过第一、二、三象限
已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上以每秒1个单位的速度由C向B运动。
(1) 求梯形ODPC的面积S与时间t的函数关系式。
(2) t为何值时,四边形PODB是平行四边形?
(3) 在线段PB上是否存在一点Q,使得ODQP为菱形。若存在求t值,若不存在,说明理由。
(4) 当△OPD为等腰三角形时,求点P的坐标。
已知A、B两地相距6千米,上午8∶00,甲从A地出发步行到B地;8∶20后,乙从B地出发
骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示。
(1) 求甲步行的速度是多少?
(2) 求甲、乙二人相遇的时刻?
(3) 求乙到达A地的时刻?
已知,如图:在△ABC中,∠ABC = 70°,∠ACB = 50°,E分别为AC、AB上的点,且BE = CD,G、M、N分别为BC、BD、CE的中点。
(1) 求∠MGN与∠A的度数相等吗?说明理由。
(2) 判断△GMN的形状,说明理由。
如图1,将由5个边长为1的小正方形组成的十字形纸板沿虚线剪拼成一个大正方形,需剪4
刀。
(1) 思考发现:大正方形的面积等于5个小正方形的面积和,大正方形的边长等于_______。
(2) 实践操作:如图2,将网格中5个边长为1的小正方形组成的图形纸板剪拼成一个大正方形,要求剪
两刀,画出剪拼的痕迹。
(3) 智力开发:将网格中的5个边长为1的正方形组成的十字形纸板,要求只剪2刀也拼成一个大正方形。
在图中用虚线画出剪拼的痕迹。