我们学习了因式分解之后可以解某些高次方程.例如,一元二次方程x2 + x − 2 = 0可以通过因式分解化为:(x − 1) (x + 2) = 0,则方程的两个解为x = 1和x = −2.反之,如果x = 1是某方程ax2 + bx + c = 0的一个解,则多项式ax2 + bx + c必有一个因式是(x − 1).
在理解上文的基础上,试找出多项式x3 + x2 − 3x + 1的一个因式,并将这个多项式因式分解.
如图,已知△ABC中,AD是高,AE是角平分线.
(1)若∠B=20°,∠C=60°,则∠EAD=_______°;
(2)若∠B=a°,∠C=b°(b>a),试通过计算,用a、b的代数式表示∠EAD的度数;
(3)特别地,当△ABC为等腰三角形(即∠B=∠C)时,请用一句话概括此时AD和AE的位置关系:____.
从三个多项式:,,中选择适当的两个进行加法运算,并把结果因式分解.
若多项式x2 + kx + 4是一个完全平方式,则k的值是( )
A.2 B.4 C.±2 D.±4
如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a∥b)的一边b上,若∠1=30°,则三角板的斜边与长尺的另一边a的夹角∠2的度数为( )
A.10° B.15° C.30° D.35°
画△ABC中AC边上的高,下列四个画法中正确的是( )