(1)阅读下列解答过程,
求y2+4y+8的最小值.
【解析】
y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,
所以y2+4y+8的最小值是4.
(2)仿(1)求①、m2+m+4的最小值②、4-x2+2x的最大值.
如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:
(1)从点A出发在图中画一条线段AB,使得AB=;
(2)画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.
某户住房的结构如图所示,该户主人打算把卧室以外的部分都铺上某种地砖,至少需要多少平方米的地砖?如果这种地砖的价格是a元/m2,那么购买所需的地砖至少需要多少元?
已知x、y满足+|x-2y+2|=0,求x-y的平方根.
下列说法正确的是( )
A、无理数是无限小数 B、是分数
C、无限小数是无理数 D、无理数包括正无理数、0和负无理数.
探索归纳:
(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于 ( )
A. 90° B. 135° C. 270° D. 315°
(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=_______
(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是________________
(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.