一元二次方程的解是( )
A. B. C.或 D.或
如图,在平行四边形ABCD中,AD=4 cm,∠A=60°,BD⊥AD. 一动点P从A出发,以每秒1 cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD .
(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;
(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1 cm的速度匀速运动,在BC上以每秒2 cm的速度匀速运动. 过Q作直线QN,使QN∥PM. 设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为S cm2 .
① 求S关于t的函数关系式;
② 求S的最大值.
已知甲乙两种食物中维生素A和B的含量及甲乙食物的成本如下表:
|
甲 |
乙 |
维生素A(单位/千克) |
300 |
500 |
维生素B(单位/千克) |
700 |
100 |
成本(元/千克) |
5 |
4 |
现将两种食物混合成100千克的混合食品。设混合食品中甲、乙食物含量分别为x(千克)和y(千克),如果混合食品中要求维生素A不低于40000单位,B不低于28000单位
(1)求x的取值范围
(2)当甲、乙各取多少千克时,符合题意的混合食品成本最低?并求该最低成本价
有两个黑布袋,布袋中有两个完全相同的小球,分别标有数字1和2. 布袋中有三个完全相同的小球,分别标有数字,和.小明从布袋中随机取出一个小球,记录其标有的数字为,再从布袋中随机取出一个小球,记录其标有的数字为,这样就确定点的一个坐标为.
(1)用列表或画树状图的方法写出点的所有可能坐标;
(2)求点落在直线上的概率.
如图,AB是⊙O的直径,弦BC=9,∠BOC=50°,OE⊥AC,垂足为E.
(1)求OE的长.
(2)求劣弧AC的长(结果精确到0.1).
请你在下面3个网格(两相邻格点的距离均为1个单位长度)内,分别设计1个图案,要求:在图(1)中所设计的图案是面积等于的轴对称图形;在图(2)中所设计的图案是面积等于2的中心对称图形;在图(3)中所设计的图案既是轴对称图形又是中心对称图形,并且面积等于3.将你设计的图案用铅笔涂黑.