如图,在平面直角坐标系中,长方形的顶点的坐标分别为,.
(1)直接写出点的坐标;
(2)若过点的直线交边于点,且把长方形的周长分为1:3两部分,求直线的解析式;
(3)设点沿的方向运动到点(但不与点重合),求△的面积与点所行路程之间的函数关系式及自变量的取值范围.
(1)如图1,为的角平分线,于,于,,请补全图形,并求与的面积的比值;
(2)如图2,分别以的边、为边向外作等边三角形和等边三角形,与相交于点,判断与的数量关系,并证明;
(3)在四边形中,已知,且,对角线平分,
请直接写出和的数量关系.
已知直线经过点、.
(1)求直线的解析式;
(2)当时,求的取值范围;
(3)我们将横坐标、纵坐标均为整数的点称为整数点.直接写出此直线与两坐标轴围成的三角形的内部(不包含边界)的整数点的坐标.
作图题(要求:画出图形,保留作图痕迹,并简要说明画法,不要求证明).
已知∠AOB及其内部一点P.
(1) 如图1,若点P在∠AOB的角平分线上,请你在图1中过点P作直线,分别交OA、OB于点C、D,使△OCD为等腰三角形,且CD是底边;
(2)若点P不在∠AOB的角平分线上(如图2),请你在图2中过点P作直线,分别交OA、OB于点C、D,使△OCD为等腰三角形,且CD是底边.
已知、,用“+”或“-”连结、,有三种不同的形式:、、,请你任取其中一种进行计算,并化简求值,其中.
如图,点是等边三角形内一点,且,外一点满足,平分,求的度数.