同学们知道“托球赛跑”游戏吗,游戏规定:用球拍托着乒乓球从起跑线起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.甲乙两同学在一次比赛的结果是:甲同学由于心急,掉了球,浪费了4秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为19秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.5倍”.根据图文信息,请问哪位同学获胜?
课堂上,李老师出了这样一道题:
已知,求代数式的值,
小明觉得直接代入计算太烦了,请你来帮他解决,并写出具体过程。
已知一次函数与反比例函数的图象交于点.
(1)求这两个函数的函数关系式;
(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;
(3)当为何值时,一次函数的值大于反比例函数的值?
计算的结果为( )
A. B. C. D.
已知反比例函数的图象经过点,则这个函数的图象位于( )
A.第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限
如图:正方形OABC中,B点的坐标为(2,2).D、E分别在边AB、BC上,F在BC的延长线上.且AD=CF,∠EDO=∠DOC.
(1)猜想△OAD与△OCF能否通过旋转重合?请证明你的猜想.
(2)若D是AB的中点.求直线DE的解析线.