方程的根为_______.
计算_______.
当______时,二次根式在实数范围内有意义.
如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
⑴ 求抛物线的解析式及顶点D的坐标;
⑵ 判断△ABC的形状,证明你的结论;
⑶ 点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
如图,在平面直角坐标系中有一矩形ABCO,B点的坐标为(12,6),点C、A在坐标轴上.⊙A 、⊙P的半径均为1,点P从点C开始在线段CO上以1单位/秒的速度向左运动,运动到点O处停止.与此同时,⊙A的半径每秒钟增大2个单位,当点P停止运动时,⊙A的半径也停止变化.设点P运动的时间为t秒.
(1)在0<t<12时,设△OAP的面积为s,试求s与t的函数关系式.并求出当t为何值时,s为矩形ABCO面积的;
(2)在点P的运动过程中,是否存在某一时刻,⊙A 与⊙P相切,若存在求出点P的坐标,若不存在,说明理由.
如图,△ABC中,∠BAC=90°,AC=2,AB=,△ACD是等边三角形.
(1)求∠ABC的度数.
(2)以点A为中心,把△ABD顺时针旋转60°,画出旋转后的图形.
(3)求BD的长度.