2的绝对值是
A. B. C.2 D.2
如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.
(1)点C的坐标为( , );
(2)若二次函数的图象经过点C.
①求二次函数的关系式;
②当-1≤x≤4时,直接写出函数值y对应的取值范围;
③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
数学实验室:小明取出一张矩形纸片ABCD,AD=BC=5,AB=CD=25.他先在矩形ABCD的边AB上取一点M,接着在CD上取一点N,然后将纸片沿MN折叠,使MB′与DN交于点K,得到△MNK(如图①).
(1)试判断△MNK的形状,并说明理由.
(2)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.
今年我国许多地方严重的“旱情”,为了鼓励居民节约用水,区政府计划实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为吨,应交水费为y元,写出y与之间的函数关系式;
(3)小英家3月份交水费39元,她家应用水多少吨?
如图,有一块圆形铁皮,BC是⊙O的直径,,在此圆形铁皮中剪下一个扇形(阴影部分).
(1)当⊙O的半径为2时,求这个扇形(阴影部分)的面积(结果保留);
(2)当⊙O的半径为R(R>0)时,在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形
围成一个圆锥?请说明理由.
“江宁义乌小商品城”销售某种小商品,平均每天可销售30件,每件盈利50元. 为了尽快减少库存,销售商决定采取降价措施. 经调查发现,每件商品每降价1元,平均每天可多售出2件.设每件商品降价x元. 据此规律,请回答:
(1)日销售量增加 件,每件商品盈利 元(用含x的代数式表示);
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,销售商日盈利可达到2100元?