已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边长作正方形PQMN,使点M落在反比例函数的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点在第二象限;
(1)如图所示,点P坐标为(1,0),图中已画出一个符合条件的正方形PQMN,请你在图中画出符合条件的另一个正方形,并写出点的坐标;
(2)请你通过改变P点的坐标,对直线M的解析式y﹦kx+b进行探究:
①k= ;
②若点P的坐标为(m,0),则b= ;
(3)依据(2)的规律,如果点P的坐标为(8,0),请你求出点和点M的坐标.
已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE
与⊙O相切,交CB的延长线于E.
⑴ 判断直线AC和DE是否平行,并说明理由;
⑵ 若∠A=30°,BE=1cm,分别求线段DE和 的长。(直接写出最后结果).
如图(1),在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=,AB与CE交于F,ED与AB、BC分别交于M、H.
(1)求证:CF=CH;
(2)如图(2),△ABC不动,将△EDC绕点C旋转到∠BCE=时,试判断四边形ACDM是什么四边形?并证明你的结论.
“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满500元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费500元.
(1)该顾客至多可得到 元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
某风景管理区为提高游客到某景点的安全性,决定将到达该景点的步行台阶改善,把倾角由45°减至30°,已知原台阶坡面AB的长为米(BC所在地面为水平面)。(1)改善后的台阶坡面会AD长多少米?(2)改善后的台阶会多占多长一段水平地面?(结果保留根号)
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,并从中随机抽取了部分学生成绩(得分取整数,满分为100分)为样本,绘制成统计图(如图所示),请根据统计图提供的信息回答下列问题:
(1)本次测试抽取了 名学生的成绩为样本.
(2)样本中,分数在80~90这一组的频率是 .
(3)样本的中位数落在 这一小组内.
(4)如果这次测试成绩80分以上(含80分)为优良,那么在抽取的学生中,优良人数为 名;
如果该校有840名学生参加这次竞赛活动,估计优良学生的人数约为 名.