我们在配平化学方程式时,对于某些简单的方程式可以用观察法配平,对于某些复杂的方程式,还可以尝试运用方程的思想和比例的方法.例如方程式:,可以设NH3的系数为1,其余三项系数分别为x、y、z,即:,依据反应前后各元素守恒,得:,解之得四项系数之比为1::1:,扩大4倍得整数比为4:5:4:6,即配平结果为
.请运用上述方法,配平化学方程式:
.
太仓人杰地灵,为了了解学生对家乡历史文化名人的知晓情况,某校对部分学生进行了随机抽样调查,并将调查结果绘制成如图所示统计图的一部分.
根据统计图中的信息,回答下列问题:
(1)本次抽样调查的样本容量是 _;
(2)在扇形统计图中,“了解很少”所在扇形的圆心角是 度;
(3)若全校共有学生1300人,那么该校约有多少名学生“基本了解”太仓的历史文化名人?
如图,已知四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.
(1)求证:OA=OB;
(2)若∠CAB=35°,求∠CDB的度数.
先化简,再从−2,0,1,2中选择一个合适的数代入,求出这个代数式的值.
解方程组:
计算:.