下面给出的四个命题中,是假命题的是( )
A.如果a=3,那么|a|=3 B.如果(a-1)(a+2)=0,那么a-1=0或a+2=0
C.如果x2=4,那么x=2 D.如果四边形ABCD是正方形,那么它是矩形
将不等式组的解集在数轴上表示,正确的是( )
下列运算正确的是( )
A.a2·a3=a6 B.(a2)3=a6 C.2x(x+y)=x2+xy D.+=3
如图,在平面直角坐标系中,直角梯形的边落在轴的正半轴上,且∥,,=4,=6,=8.正方形的两边分别落在坐标轴上,且它的面积等于直角梯形面积。将正方形沿轴的正半轴平行移动,设它与直角梯形的重叠部分面积为。
(1)分析与计算:
求正方形的边长;
(2)操作与求【解析】
①正方形平行移动过程中,通过操作、观察,试判断(>0)的变化情况是 ;
A.逐渐增大 B.逐渐减少 C.先增大后减少 D.先减少后增大
②当正方形顶点移动到点时,求的值;
(3)探究与归纳:
|
已知抛物线与x轴交于两点、,与y轴交于点C,AB=6.
(1)求抛物线和直线BC的解析式.
(2)在给定的直角坐标系中,画出抛物线和直线BC.
(3)若⊙P过A、B、C三点,求⊙P的半径.
(4)抛物线上是否存在点M,过点M作轴于点N,使被直线BC分成面积比为的两部
分?若存在,请求出点M的坐标;若不存在,请说明理由.
某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种圭特产,且必须装满.根据下表提供的信息,解答以下问题:
土特产种类 |
甲 |
乙 |
丙 |
每辆汽车运载量(吨) |
8 |
6 |
5 |
每吨土特产获利(百元) |
12 |
16 |
10 |
(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.
(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.