小芳从正面(图示“主视方向”)观察左边的热水瓶时,得到的左视图是( )
下列计算正确的是( )
A. B. C. D.
二次函数的图象的顶点坐标是( )
A.(,) B.(,) C.(,) D.(,)
下列各数中属于正整数的是( )
A. B. C. D.
如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内。
(1) 求点E的坐标;
(2) 点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,
连结PN。设PE=x.△PMN的面积为S。
① 求S关于x的函数关系式;
② △PMN的面积是否存在最大值,若不存在,请说明理由。若存在,求出面积的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC)。现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2)。设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯形ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式。
如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线OM上一动点,连结EB,过O作OP⊥EB于P,连结CP,过P作PF⊥PC交射线OS于F。
(1)求证:△POC∽△PBF。
(2)当OE=1,OE=2时, BF的长分别为多少?当OE=n时,BF=_______.
(3)当OE=1时,;OE=2时, ;…,OE=n时,.则=_______.(直接写出答案)
|