下列计算正确的是( )
A. B.
C. D.
下列长度的三条线段,能组成三角形的是( )
A. 1,1,2 B. 3,4,5 C. 1,4,6 D. 2,3,7
等于( )
A. B. C. D.
已知:直角梯形中,∥,∠=,以为直径的圆交于点、,连结、、.
(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形:
_____________________,______________________ ;
(2)直角梯形中,以为坐标原点,在轴正半轴上建立直角坐标系(如图2),若抛物线经过点、、,且为抛物线的顶点.
①写出顶点的坐标(用含的代数式表示)___________;
②求抛物线的解析式;
③在轴下方的抛物线上是否存在这样的点,过点作⊥轴于点,使得以点、、为顶点的三角形与△相似?若存在,求出点的坐标;若不存在,说明理由.
如图,已知,两点的坐标分别为(,),(,),⊙的圆心坐标为(,),并与轴交于坐标原点.若是⊙上的一个动点,线段与轴交于点.
(1)线段长度的最小值是_________,最大值是_________;
(2)当点运动到点和点时,线段所在的直线与⊙相切,求由 、、弧所围成的图形的面积;
(3)求出△的最大值和最小值
阅读材料,解答问题.
例 如图,在△中,∠,∠,利用此等腰直角三角形你能求出的值吗?
【解析】
延长到点,使,连结.
设().
∵在△中,∠,∠.
∴∠.
∴,.
∴.
∴.
(1)仿照上例,求出的值;
(2)在一次课外活动中,小刘从上例得到启发,用硬纸片做了两个直角三角形,如图1、图2.图1中,∠,∠,;图2中,∠,∠,.图3是小刘所做的一个实验:他将△的直角边与△的斜边重合在一起,并将△沿方向移动.在移动过程中,、两点始终在边上(移动开始时点与点重合).
①在△沿方向移动的过程中,∠的度数逐渐__________.(填“不变”、“变大”、“变小”)
②在△移动过程中,是否存在某个位置,使得∠?如果存在,求出的长度;如果不存在,请说明理由.