某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数(亩)与补贴数额(元)之间大致满足如图1所示的一次函数关系.随着补贴数额的不断增大,出口量也不断增加,但每亩蔬菜的收益(元)会相应降低,且与之间也大致满足如图2所示的一次函数关系.
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
(2)分别求出政府补贴政策实施后,种植亩数和每亩蔬菜的收益与政府补贴数额之间的函数关系式;
(3)要使全市这种蔬菜的总收益(元)最大,政府应将每亩补贴数额定为多少?并求出总收益的最大值.
如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
⑴当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.
已知关于x的方程x2-2(k-1)x+ k2=0有两个实数根
(1)求k的取值范围;
(2)若,求k的值.
在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数的图象上的概率;
(3)求小明、小华各取一次小球所确定的数x、y满足的概率.
某校初三课外活动小组,在测量树高的一次活动中,如图7所示,测得树底部中心A到斜坡底C的水平距离为8. 8m.在阳光下某一时刻测得1米的标杆影长为0.8m,树影落在斜坡上的部分CD= 3.2m.已知斜坡CD的坡比i=1:,求树高AB。(结果保留整数,参考数据:1.7)
益趣玩具店购进一种儿童玩具,计划每个售价36元,能盈利80﹪,在销售中出现了滞销,于
是先后两次降价,售价降为25元。
(1)求这种玩具的进价。
(2)求平均每次降价的百分率(精确到0.1﹪)。