在函数中自变量的取值范围是 .
如图,直线∥,∠2=121°,则∠1= 度.
如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把△AOP绕着点A按逆时针方向旋转,使边A0与AB重合,得到△ABD.
(1)求点B的坐标;
(2)当点P运动到点(,0)时,求此时点D的坐标;
(3)在点P运动的过程中是否存在某个位置,使△OPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
如图,对称轴为直线x=一的抛物线经过点A(-6,0)和点B(0,4).
(1)求抛物线的解析式和顶点坐标;
(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求□OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;
①当□OEAF的面积为24时,请判断□OEAF是否为菱形?
②是否存在点E,使□OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E。
(1)求证:DE为⊙O的切线;
(2)若⊙O的半径为5,∠BAC=60°,求DE的长.
.如图,某堤坝的横截面是梯形AB—CD,背水坡AD的坡度i(即tana)为1:1.2,坝高为5m,现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽lm,形成新的背水坡EF,其坡度为1:1.4,已知堤坝总长度为4000m.
(1)完成该工程需要多少土方?
(2)该工程由甲、乙两个工程队同时合作完成,按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?