某不等式组的解集在数轴上表示如图,则这个不等式组可能是
A. |
B. |
C. |
D. |
图是小红设计的钻石形商标,△ABC是边长为2的等边三角形,四边形ACDE是等腰梯形,AC∥ED,∠EAC=60°,AE=1.
(1)证明:△ABE≌△CBD;
(2)图中存在多对相似三角形,请你找出一对进行证明,并求出其相似比(不添加辅助线,不找全等的相似三角形);
(3)小红发现AM=MN=NC,请证明此结论;
(4)求线段BD的长.
如图,已知抛物线经过定点A(1,0),它的顶点P是y轴正半轴上的一个动点,
P点关于x轴的对称点为P′,过P′ 作x轴的平行线交抛物线于B、D两点(B点在y轴右
侧),直线BA交y轴于C点.按从特殊到一般的规律探究线段CA与CB的比值:
(1)当P点坐标为(0,1)时,写出抛物线的解析式并求线段CA与CB的比值;
(2)若P点坐标为(0,m)时(m为任意正实数),线段CA与CB的比值是否与⑴所求的比值相同?请说明理由.
某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含
14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收
费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为吨,应交水费为y元,写出y与之间的函数关系式;
(3)小英家3月份用水24吨,她家应交水费多少元?
如图,AE是位于公路边的电线杆,为了使拉线CDE不影响汽车的正常行驶,电力部
门在公路的另一边竖立了一根水泥撑杆BD,用于撑起拉线.已知公路的宽AB为8米,电线
杆AE的高为12米,水泥撑杆BD高为6米,拉线CD与水平线AC的夹角为67.4°.求拉线
CDE的总长L(A、B、C三点在同一直线上,电线杆、水泥杆的大小忽略不计).
(参考数据:sin67.4°≈ ,cos67.4°≈ ,tan67.4°≈)
观察下列算式:
① 1 × 3 - 22 = 3 - 4 = -1
② 2 × 4 - 32 = 8 - 9 = -1
③3 × 5 - 42 = 15 - 16 = -1
④
……
(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.