如图,正方形ABCD的顶点A、B分别在y轴和x轴上,且A点的坐标为(0,1),正方形的边长为.
(1) 直接写出D、C两点的坐标;
(2)求经过A、D、C三点的抛物线的关系式;
(3)若正方形以每秒个单位长度的速度匀速沿射线下滑,直至顶点落在轴上时停 止.设正方形落在轴下方部分的面积为S,求S关于滑行时间的函数关系式,并写出相应自变量的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,到顶点落在轴上时,求抛物线上 两点间的抛物线弧所扫过的面积.
△ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.
(1) 证明:△BDG≌△CEF;
(2) 设△ABC的边长为2,请你帮小聪求出正方形的边长.(结果精确到十分位)
(3) 小颖想:不求正方形的边长我也能画出正方形.具体作法是:如图3
①在AB边上任取一点G′,如图作正方形G′D′E′F′;
②连接BF′并延长交AC于F;
③作FE∥F′E′交BC于E,FG∥F′G′交AB于G,GD∥G′D′交BC于D,则四边形DEFG即为所求.你认为小颖的作法正确吗?请说明理由.
“五·一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:
(1)若去A地的车票占全部车票的20%,请求出D地车票的数量,并补全条形统计图;
(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工张鹏抽到去A地的概率是多少?
(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
如图,家住阳头A小区的小明经韩阳大桥BC到公司D上班,路线为A→B→C→D,因韩阳大桥重新修建,他只能改道经南湖大桥FE上班,路线为A→F→E→D,已知BC∥EF,BF∥CE,AB⊥BF,CD⊥DE,AB=200米,BC=100米,∠AFB=30°,∠DEC=45°,请你计算小明原来上班的路程是多少米?后因改道增加了多少米?(结果精确到1米)
宁武高速公路是宁德通往内陆的第一条高速公路,沿线桥隧相连,施工难度大,工期紧。首条长隧道----小东山隧道工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成。
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元。若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥BC.