已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系
已知A(1,5),B(3,-1)两点,在x轴上取一点M,使AM-BN取得最大值时,则M的坐标为 ▲
已知(=1,2,,2012)满足,
使直线(=1,2,,2012)的图像经过一、二、四象限的概率是 ▲
已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M2,M3…,Mn,则= ▲
已知三个数x, y, z,满足
则 ▲
如图,矩形ABCD中,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,
点G是BC、AE延长线的交点,AG与CD相交于点F。
求证:四边形ABCD是正方形;
当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论。