满分5 > 初中数学试题 >

某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电...

某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.

(1)求购买1块电子白板和一台笔记本电脑各需多少元?

(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?

(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?

 

(1)购买1块电子白板需要15000元,一台笔记本电脑需要4000元(2)有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块。(3)当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元 【解析】【解析】 (1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得: ,解得:。 答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元。 (2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得: ,解得:。 ∵a为整数,∴a=99,100,101,则电脑依次买:297,296,295。 ∴该校有三种购买方案:           方案一:购买笔记本电脑295台,则购买电子白板101块; 方案二:购买笔记本电脑296台,则购买电子白板100块; 方案三:购买笔记本电脑297台,则购买电子白板99块。 (3)设购买笔记本电脑数为z台,购买笔记本电脑和电子白板的总费用为W元, 则W=4000z+15000(396﹣z)=﹣11000z+5940000, ∵W随z的增大而减小,∴当z=297时,W有最小值=2673000(元) ∴当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元。 (1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得等量关系:①买1块电子白板的钱=买3台笔记本电脑的钱+3000元,②购买4块电子白板的费用+5台笔记本电脑的费用=80000元,由等量关系可得方程组,解方程组可得答案。 (2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得不等关系:①购买笔记本电脑的台数≤购买电子白板数量的3倍;②电子白板和笔记本电脑总费用≤2700000元,根据不等关系可得不等式组,解不等式组,求出整数解即可。 (3)由于电子白板贵,故少买电子白板,多买电脑,根据(2)中的方案确定买的电脑数与电子白板数,再算出总费用。
复制答案
考点分析:
相关试题推荐

为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4各不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.

(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.

(2)小张同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?

 

查看答案

如图,已知双曲线6ec8aac122bd4f6e和直线y=mx+n交于点A和B,B点的坐标是(2,﹣3),AC垂直y轴于点C,AC=6ec8aac122bd4f6e

(1)求双曲线和和直线的解析式.

(2)求△AOB的面积.

6ec8aac122bd4f6e

 

查看答案

如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.

6ec8aac122bd4f6e

 

查看答案

解方程:6ec8aac122bd4f6e

 

查看答案

计算:6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.