问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶
点,可把原n边形分割成多少个互不重叠的小三角形?
问题探究:为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手:
探究一:以△ABC的3个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互
不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.
探究二:以△ABC的3个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个
互不重叠的小三角形?
在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种
情况:
一种情况,点Q在图①分割成的某个小三角形内部.不妨设点Q在△PAC的内部,如图②;
另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨设点Q在PA上,如图③.
显然,不管哪种情况,都可把△ABC分割成5个互不重叠的小三角形.
探究三:以△ABC的三个顶点和它内部的3个点P、Q、R,共6个点为顶点,可把△ABC分割成 个
互不重叠的小三角形,并在图④中画出一种分割示意图.
探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个点为顶点,可把△ABC分割成 个
互不重叠的小三角形.
探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成
个互不重叠的小三角形.
问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成
个互不重叠的小三角形.
实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互
不重叠的小三角形?(要求列式计算)
在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行
销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元
/个)之间的对应关系如图所示.
(1)试判断y与x之间的函数关系,并求出函数关系式;
(2)若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的
函数关系式;
(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出
最大利润.
如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF⊥AC于
F,点O既是AC的中点,又是EF的中点.
(1)求证:△BOE≌△DOF;
(2)若OA=BD,则四边形ABCD是什么特殊四边形?请说明理由.
如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,
教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影
子F与墙角C有13m的距离(B、F、C在一条直线上).
(1)求教学楼AB的高度;
(2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).
(参考数据:sin22º≈,cos22º≈,tan22º≈)
小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84km,
返回时经过跨海大桥,全程约45km.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回
时多20min.求小丽所乘汽车返回时的平均速度.
某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就
可以随机抽取一张奖券,抽得奖券“紫气东来”、“化开富贵”、“吉星高照”,就可以分别获得100元、50元、
20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元,小明购
买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:
奖券种类 |
紫气东来 |
化开富贵 |
吉星高照 |
谢谢惠顾 |
出现张数(张) |
500 |
1000 |
2000 |
6500 |
(1)求“紫气东来”奖券出现的频率;
(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?说明理由.