满分5 > 初中数学试题 >

如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6...

如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).

(1)求经过A、B、C三点的抛物线解析式;

(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;

(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F,为顶点的三角形与△ABC相似吗?

 请说明理由.

说明: 6ec8aac122bd4f6e

 

【解析】 (1)∵抛物线经过A(-4,0)、B(1,0),∴设函数解析式为:y=a(x+4)(x-1)。 又∵由抛物线经过C(-2,6),∴6=a(-2+4)(-2-1),解得: a=-1。       ∴经过A、B、C三点的抛物线解析式为:y=-(x+4)(x-1),即y=-x2-3x+4。 (2)证明:设直线BC的函数解析式为y=kx+b, 由题意得: ,解得:。 ∴直线BC的解析式为y=-2x+2. ∴点E的坐标为(0,2)。 ∴。 ∴AE=CE。 (3)相似。理由如下: 设直线AD的解析式为y=k1x+b1,则 ,解得:。 ∴直线AD的解析式为y=x+4。 联立直线AD与直线BC的函数解析式可得:,解得:。 ∴点F的坐标为( )。 则。 又∵AB=5,, ∴。∴。 又∵∠ABF=∠CBA,∴△ABF∽△CBA。 ∴以A、B、F为顶点的三角形与△ABC相似。 【解析】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,勾股定理,相似三角形的判定。 【分析】(1)利用待定系数法求解即可得出抛物线的解析式。 (2)求出直线BC的函数解析式,从而得出点E的坐标,然后分别求出AE及CE的长度即可证明出结论。 (3)求出AD的函数解析式,然后结合直线BC的解析式可得出点F的坐标,根据勾股定理分别求出BF,BC 得出;由题意得∠ABF=∠CBA, 即可作出判断。
复制答案
考点分析:
相关试题推荐

“节能环保,低碳生活”是我们倡导的一种 生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如下表所示:

说明: 6ec8aac122bd4f6e

 (1)在不超出现有资金前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的3倍.请问商场有哪几种进货方案?

 (2)在“2012年消费促进月”促销活动期问,商家针对这三种节能型)品推出“现金每购满1000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下若三种电器在活动期间全部售出,商家预估最多送出消费券多少张?

 

查看答案

如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E、交BC于点F,连接AF、CE.

(1)求证:四边形AFCE为菱形;

(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.

说明: 6ec8aac122bd4f6e

 

查看答案

为了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:

分数段

频数

频率

60≤x<70

30

0.1

70≤x<80

90

n

80≤x<90

m

0.4

90≤x≤100

60

0.2

 

说明: 6ec8aac122bd4f6e

 

请根据以上图表提供的信息,解答下列问题:

  (1)本次调查的样本容量为       

  (2)在表中:m=     .n=         ;

  (3)补全频数分布直方图:

(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在

         分数段内;

(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是    

 

查看答案

已知6ec8aac122bd4f6e= -3,6ec8aac122bd4f6e=2,求代数式6ec8aac122bd4f6e的值.

 

查看答案

计算:6ec8aac122bd4f6e 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.