满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直线:y=-2x+b (b≥0)的位置随b的不同取值而...

如图,在平面直角坐标系中,直线6ec8aac122bd4f6e:y=-2x+b (b≥0)的位置随b的不同取值而变化.

    (1)已知⊙M的圆心坐标为(4,2),半径为2.

    当b=    时,直线6ec8aac122bd4f6e:y=-2x+b (b≥0)经过圆心M:

    当b=    时,直线6ec8aac122bd4f6e:y=-2x+b(b≥0)与OM相切:

    (2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).

设直线6ec8aac122bd4f6e扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式,

说明: 6ec8aac122bd4f6e

说明: 6ec8aac122bd4f6e

 

【解析】 (1)10;。 (2)由A(2,0)、B(6,0)、C(6,2),根据矩形的性质,得D(2,2)。 如图,当直线经过A(2,0)时,b=4;当直线经过D(2,2)时,b=6;当直线经过B(6,0)时,b=12;当直线经过C(6,2)时,b=14。 当0≤b≤4时,直线扫过矩形ABCD的面积S为0。 当4<b≤6时,直线扫过矩形ABCD的面积S为△EFA的面积(如图1), 在 y=-2x+b中,令x=2,得y=-4+b,则E(2,-4+b), 令y=0,即-2x+b=0,解得x=,则F(,0)。 ∴AF=,AE=-4+b。 ∴S=。 当6<b≤12时,直线扫过矩形ABCD的面积S为直角梯形DHGA的面积(如图2), 在 y=-2x+b中,令y=0,得x=,则G(,0), 令y=2,即-2x+b=2,解得x=,则H(,2)。 ∴DH=,AG=。AD=2 ∴S=。 当12<b≤14时,直线扫过矩形ABCD的面积S为五边形DMNBA的面积=矩形ABCD的面积-△CMN的面积(如图3) 在 y=-2x+b中,令y=2,即-2x+b=2,解得x=,则M(,0), 令x=6,得y=-12+b,,则N(6,-12+b)。 ∴MC=,NC=14-b。 ∴S=。 当b>14时,直线扫过矩形ABCD的面积S为矩形ABCD的面积,面积为民8。 综上所述。S与b的函数关系式为: 。 【解析】直线平移的性质,相似三角形的判定和性质,待定系数法,曲线上点的坐标与方程的关系,直线与圆相切的性质,勾股定理,解一元二次方程,矩形的性质。 【分析】(1)①∵直线y=-2x+b (b≥0)经过圆心M(4,2),               ∴2=-2×4+b,解得b=10。 ②如图,作点M垂直于直线y=-2x+b于点P,过点 P作PH∥x轴,过点M作MH⊥PH,二者交于点H。设直线y=-2x+b与x,y轴分别交于点A,B。            则由△OAB∽△HMP,得。            ∴可设直线MP的解析式为。            由M(4,2),得,解得。∴直线MP的解析式为。            联立y=-2x+b和,解得。            ∴P()。            由PM=2,勾股定理得,,化简得。            解得。 (2)求出直线经过点A、B、C、D四点时b的值,从而分0≤b≤4,4<b≤6,6<b≤12,12<b≤14,b>14五种情况分别讨论即可。
复制答案
考点分析:
相关试题推荐

如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).

(1)求经过A、B、C三点的抛物线解析式;

(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;

(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F,为顶点的三角形与△ABC相似吗?

 请说明理由.

说明: 6ec8aac122bd4f6e

 

查看答案

“节能环保,低碳生活”是我们倡导的一种 生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如下表所示:

说明: 6ec8aac122bd4f6e

 (1)在不超出现有资金前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的3倍.请问商场有哪几种进货方案?

 (2)在“2012年消费促进月”促销活动期问,商家针对这三种节能型)品推出“现金每购满1000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下若三种电器在活动期间全部售出,商家预估最多送出消费券多少张?

 

查看答案

如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E、交BC于点F,连接AF、CE.

(1)求证:四边形AFCE为菱形;

(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.

说明: 6ec8aac122bd4f6e

 

查看答案

为了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:

分数段

频数

频率

60≤x<70

30

0.1

70≤x<80

90

n

80≤x<90

m

0.4

90≤x≤100

60

0.2

 

说明: 6ec8aac122bd4f6e

 

请根据以上图表提供的信息,解答下列问题:

  (1)本次调查的样本容量为       

  (2)在表中:m=     .n=         ;

  (3)补全频数分布直方图:

(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在

         分数段内;

(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是    

 

查看答案

已知6ec8aac122bd4f6e= -3,6ec8aac122bd4f6e=2,求代数式6ec8aac122bd4f6e的值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.