满分5 > 初中数学试题 >

观察下列等式: 12×231=132×21, 13×341=143×31, 23...

观察下列等式:

12×231=132×21,

13×341=143×31,

23×352=253×32,

34×473=374×43,

62×286=682×26,

以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.

(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:

①52×     =      ×25;

  ×396=693×  

(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.

 

【解析】 (1)①275;572。 ②63;36。 (2)“数字对称等式”一般规律的式子为: (10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a)。证明如下: ∵左边两位数的十位数字为a,个位数字为b, ∴左边的两位数是10a+b,三位数是100b+10(a+b)+a, 右边的两位数是10b+a,三位数是100a+10(a+b)+b, ∴左边=(10a+b)×[100b+10(a+b)+a]=(10a+b)(100b+10a+10b+a) =(10a+b)(110b+11a)=11(10a+b)(10b+a), 右边=[100a+10(a+b)+b]×(10b+a)=(100a+10a+10b+b)(10b+a) =(110a+11b)(10b+a)=11(10a+b)(10b+a), ∴左边=右边。 ∴“数字对称等式”一般规律的式子为: (10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a)。 【解析】分类归纳(数字的变化类),代数式的计算和证明。 【分析】(1)观察规律,左边,两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;右边,三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可: ①∵5+2=7,∴左边的三位数是275,右边的三位数是572。∴52×275=572×25。 ②∵左边的三位数是396,∴左边的两位数是63,右边的两位数是36。∴63×369=693×36。 (2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行证明即可。
复制答案
考点分析:
相关试题推荐

如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.

(1)求二次函数与一次函数的解析式;

(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.

说明: 6ec8aac122bd4f6e

 

查看答案

如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.

求证:(1)△ADA′≌△CDE;

(2)直线CE是线段AA′的垂直平分线.

说明: 6ec8aac122bd4f6e

 

查看答案

某学校课程安排中,各班每天下午只安排三节课.

(1)初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率;

(2)星期三下午,初二(1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是6ec8aac122bd4f6e.已知这两个班的数学课都有同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率(直接写结果).

 

查看答案

如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:6ec8aac122bd4f6e

6ec8aac122bd4f6e

说明: 6ec8aac122bd4f6e

 

查看答案

某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的6ec8aac122bd4f6e倍,购进数量比第一次少了30支.

(1)求第一次每支铅笔的进价是多少元?

(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.