满分5 > 初中数学试题 >

如图,在等腰梯形ABCD中,ABDC,AB=3,DC=,高CE=2,对角线AC、...

如图,在等腰梯形ABCD中,ABDC,AB=36ec8aac122bd4f6e,DC=6ec8aac122bd4f6e,高CE=26ec8aac122bd4f6e,对角线AC、BD交于H,平行于线段BD的两条直线MN、RQ同时从点A出发沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G;当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的图形面积为S1、被直线RQ扫过的图形面积为S2,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.

(1)填空:∠AHB=   ;AC=   

(2)若S2=3S1,求x;

(3)设S2=mS1,求m的变化范围.

说明: 6ec8aac122bd4f6e

 

【解析】 (1)90°;4。 (2)直线移动有两种情况:0<x<及≤x≤2。 ①当0<x<时,∵MN∥BD,∴△AMN∽△ARQ。 ∵直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒, ∴△AMN和△ARQ的相似比为1:2。 ∴。∴S2=4S1,与题设S2=3S1矛盾。 ∴当0<x<时,不存在x使S2=3S1。 ②当≤x≤2时,  ∵AB∥CD,∴△ABH∽△CDH。 ∴CH:AH=CD:AB=DH:BH=1:3。 ∴CH=DH=AC=1,AH═BH=4﹣1=3。 ∵CG=4﹣2x,AC⊥BD,∴S△BCD=×4×1=2 ∵RQ∥BD,∴△CRQ∽△CDB。 ∴。 又, ∵MN∥BD,∴△AMN∽△ADB。∴, ∴S1=x2,S2=8﹣8(2﹣x)2。 ∵S2=3S1,∴8﹣8(2﹣x)2=3·x2,解得:x1=(舍去),x2=2。 ∴x的值为2。 (3)由(2)得:当0<x<时,m=4, 当≤x≤2时,∵S2=mS1, ∴。 ∴m是的二次函数,当≤x≤2时,即当时,m随的增大而增大, ∴当x=时,m最大,最大值为4;当x=2时,m最小,最小值为3。 ∴m的变化范围为:3≤m≤4。 【解析】相似三角形的判定和性质,平移的性质,二次函数的最值,等腰梯形的性质。 【分析】(1)过点C作CK∥BD交AB的延长线于K, ∵CD∥AB,∴四边形DBKC是平行四边形。 ∴BK=CD=,CK=BD。 ∴AK=AB+BK=。 ∵四边形ABCD是等腰梯形,∴BD=AC。 ∴AC=CK。∴AE=EK=AK=2=CE。 ∵CE是高,∴∠K=∠KCE=∠ACE=∠CAE=45°。∴∠ACK=90°。∴∠AHB=∠ACK=90° ∴AC=AK•cos45°=。 (2)直线移动有两种情况:0<x<及≤x≤2;然后分别从这两种情况分析求【解析】 当 0<x<时,易得S2=4S1≠3S1;当 ≤x≤2时,根据相似三角形的性质与直角三角形的面积的求解方法,可求得△BCD与△CRQ的面积,继而可求得S2与S1的值,由S2=3S1,即可求得x的值; (3)由(2)可得当0<x< 时,m=4;当≤x≤2时,可得,化为关于的二次函数,利用二次函数的性质求得m的变化范围。
复制答案
考点分析:
相关试题推荐

已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.

(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);

(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;

(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.

说明: 6ec8aac122bd4f6e

 

查看答案

观察下列等式:

12×231=132×21,

13×341=143×31,

23×352=253×32,

34×473=374×43,

62×286=682×26,

以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.

(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:

①52×     =      ×25;

  ×396=693×  

(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.

 

查看答案

如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.

(1)求二次函数与一次函数的解析式;

(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.

说明: 6ec8aac122bd4f6e

 

查看答案

如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.

求证:(1)△ADA′≌△CDE;

(2)直线CE是线段AA′的垂直平分线.

说明: 6ec8aac122bd4f6e

 

查看答案

某学校课程安排中,各班每天下午只安排三节课.

(1)初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率;

(2)星期三下午,初二(1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是6ec8aac122bd4f6e.已知这两个班的数学课都有同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率(直接写结果).

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.