满分5 > 初中数学试题 >

如图1,已知菱形ABCD的边长为,点A在x轴负半轴上,点B在坐标原点.点D的坐标...

如图1,已知菱形ABCD的边长为6ec8aac122bd4f6e,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(- 6ec8aac122bd4f6e,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.

(1)求这条抛物线的函数解析式;

(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t< 3 )

①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;

②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)

6ec8aac122bd4f6e

 

(1)y=-x2+3(2)①存在,t=1② 【解析】【解析】 (1)由题意得AB的中点坐标为(-3 ,0),CD的中点坐标为(0,3),   分别代入y=ax2+b,得,解得, 。 ∴这条抛物线的函数解析式为y=-x2+3。                                     (2)①存在。如图2所示,在Rt△BCE中,∠BEC=90°,BE=3,BC= , ∴ 。∴∠C=60°,∠CBE=30°。∴EC=BC=,DE=。  又∵AD∥BC,∴∠ADC+∠C=180°。∴∠ADC=180°-60°=120° 要使△ADF与△DEF相似,则△ADF中必有一个角为直角。 (I)若∠ADF=90°,∠EDF=120°-90°=30°。 在Rt△DEF中,DE=,得EF=1,DF=2。 又∵E(t,3),F(t,-t2+3),∴EF=3-(-t2+3)=t2。∴t2=1。 ∵t>0,∴t=1 。                                    此时,∴。 又∵∠ADF=∠DEF,∴△ADF∽△DEF。                                  (II)若∠DFA=90°,可证得△DEF∽△FBA,则。 设EF=m,则FB=3-m。 ∴ ,即m2-3m+6=0,此方程无实数根。∴此时t不存在。  (III)由题意得,∠DAF<∠DAB=60°,∴∠DAF≠90°,此时t不存在。  综上所述,存在t=1,使△ADF与△DEF相似。 ② (1)根据已知条件求出AB和CD的中点坐标,然后利用待定系数法求该二次函数的解析式。 (2)①如图2所示,△ADF与△DEF相似,包括三种情况,需要分类讨论: (I)若∠ADF=90°时,△ADF∽△DEF,求此时t的值。 (II)若∠ADF=90°时,△DEF∽△FBA,利用相似三角形的对应边成比例可以求得相应的t的值。 (III)∠DAF≠90°,此时t不存在。 ②画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出t的取值范围: 如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN⊥x轴,分别交抛物线、x轴于点M、点N。 观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′≤BE且MN≥C′N。 ∵F(t,3-t2),∴EF=3-(3-t2)=t2。∴EE′=2EF=2t2。 由EE′≤BE,得2t2≤3,解得。 又∵C′E′=CE= ,∴C′点的横坐标为t-。∴MN=3-(t-)2, 又C′N=BE′=BE-EE′=3-2t2, ∴由MN≥C′N,得3-(t- )2≥3-2t2,即t2+2t-3≥0。 求出t2+2t-3=0,得,∴t2+2t-3≥0即。 ∵,∴,解得t≥。 ∴t的取值范围为:
复制答案
考点分析:
相关试题推荐

为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.

(1)求乙、丙两种树每棵各多少元?

(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?

(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?

 

查看答案

已知,如图,在梯形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA长为半径的⊙D与AB相切于A,与BC交于点F,过点D作DE⊥BC,垂足为E.

(1)求证:四边形ABED为矩形;

(2)若AB=4,6ec8aac122bd4f6e ,求CF的长.

6ec8aac122bd4f6e

 

查看答案

某市开展了“雷锋精神你我传承,关爱老人从我做起”的主题活动,随机调查了本市部分老人与子女同住情况,根据收集到的数据,绘制成如下统计图表(不完整)

老人与子女同住情况百分比统计表

老人与子女

同住情况

同住

不同住

(子女在本市)

不同住

(子女在市外)

其他

 

 

a

50%

b

5%

6ec8aac122bd4f6e

根据统计图表中的信息,解答下列问题:

(1)求本次调查的老人的总数及a、b的值;

(2)将条形统计图补充完整;(画在答卷相对应的图上)

(3)若该市共有老人约15万人,请估计该市与子女“同住”的老人总数.

 

查看答案

已知:如图,在6ec8aac122bd4f6eABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.

(1)说明△DCE≌△FBE的理由;

(2)若EC=3,求AD的长.

6ec8aac122bd4f6e

 

查看答案

如图,已知反比例函数6ec8aac122bd4f6e(k≠0)的图象经过点(-2,8).

(1)求这个反比例函数的解析式;

(2)若(2,y1),(4,y2)是这个反比例函数图象上的两个点,请比较y1、y2的大小,并说明理由.

6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.