满分5 > 初中数学试题 >

已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,A...

已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.

(1)求证:△ABE≌△BCF;

(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;

(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.

6ec8aac122bd4f6e

 

(1)证明见解析(2)(3)没有变化,理由见解析 【解析】(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCF=90°,AB=BC。∴∠ABF+∠CBF=90°。 ∵AE⊥BF,∴∠ABF+∠BAE=90°。∴∠BAE=∠CBF。 在△ABE和△BCF中,∵∠ABE=∠BCF,AB=BC,∠BAE=∠CBF, ∴△ABE≌△BCF(ASA)。  (2)【解析】 ∵正方形面积为3,∴AB=。 在△BGE与△ABE中,∵∠GBE=∠BAE,∠EGB=∠EBA=90°,∴△BGE∽△ABE。 ∴。 又∵BE=1,∴AE2=AB2+BE2=3+1=4。 ∴。 (3)【解析】 没有变化。理由如下: ∵AB=,BE=1,∴。∴∠BAE=30°。 ∵AB′=AD,∠AB′E′=∠ADE'=90°,AE′= AE′,∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′, ∴∠DAE′=∠B′AE′=∠BAE=30°。 ∴AB′与AE在同一直线上,即BF与AB′的交点是G。 设BF与AE′的交点为H, 则∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG= AG,∴△BAG≌△HAG。 ∴。 ∴△ABE在旋转前后与△BCF重叠部分的面积没有变化。 (1)由四边形ABCD是正方形,可得∠ABE=∠BCF=90°,AB=BC,又由AE⊥BF,由同角的余角相等,即可证得∠BAE=∠CBF,然后利用ASA,即可判定:△ABE≌△BCF。 (2)由正方形ABCD的面积等于3,即可求得此正方形的边长,由在△BGE与△ABE中,∠GBE=∠BAE,∠EGB=∠EBA=90°,可证得△BGE∽△ABE,由相似三角形的面积比等于相似比的平方,即可求得答案。 (3)由正切函数,求得∠BAE=30°,易证得Rt△ABE≌Rt△AB′E′≌Rt△ADE′,可得AB′与AE在同一直线上,即BF与AB′的交点是G,然后设BF与AE′的交点为H,可证得△BAG≌△HAG,从而证得结论
复制答案
考点分析:
相关试题推荐

已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A6ec8aac122bd4f6e和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.

(1)求原抛物线的解析式;

(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比6ec8aac122bd4f6e(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:6ec8aac122bd4f6e,结果可保留根号)

6ec8aac122bd4f6e

 

查看答案

观察图形,解答问题:

6ec8aac122bd4f6e

(1)按下表已填写的形式填写表中的空格:

 

图①

图②

图③

三个角上三个数的积

1×(﹣1)×2=﹣2

(﹣3)×(﹣4)×(﹣5)=﹣60

 

三个角上三个数的和

1+(﹣1)+2=2

(﹣3)+(﹣4)+(﹣5)=﹣12

 

积与和的商

﹣2÷2=﹣1,

 

 

(2)请用你发现的规律求出图④中的数y和图⑤中的数x.

 

查看答案

为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.

(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?

(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.

 

查看答案

超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.

(1)求B、C两点的距离;

(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?

(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,6ec8aac122bd4f6e,60千米/小时≈16.7米/秒)

6ec8aac122bd4f6e

 

查看答案

某市每年都要举办中小学三独比赛(包括独唱、独舞、独奏三个类别),如图是该市2012年参加三独比赛的不完整的参赛人数统计图.

6ec8aac122bd4f6e

(1)该市参加三独比赛的总人数是   人,图中独唱所在扇形的圆心角的度数是   度,并把条形统计图补充完整;

(2)从这次参赛选手中随机抽取20人调查,其中有9人获奖,请你估算今年全市约有多少人获奖?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.