满分5 > 初中数学试题 >

如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B...

如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:

6ec8aac122bd4f6e

(1)当t为何值时,PQ∥BC.

(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.

(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.

(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.

 

(1)s(2)当t=s时,S取得最大值,最大值为cm2(3)不存在。理由见解析(4)存在,cm2 【解析】【解析】 ∵AB=10cm,AC=8cm,BC=6cm, ∴由勾股定理逆定理得△ABC为直角三角形,∠C为直角。 (1)BP=2t,则AP=10﹣2t. 若PQ∥BC,则,即,解得。 ∴当s时,PQ∥BC。 (2)如图1所示,过P点作PD⊥AC于点D。 则PD∥BC,∴△APD∽△ABC。 ∴,即,解得。 ∴S=×AQ×PD=×2t×() 。 ∴当t=s时,S取得最大值,最大值为cm2。 (3)不存在。理由如下: 假设存在某时刻t,使线段PQ恰好把△ABC的面积平分, 则有S△AQP=S△ABC,而S△ABC=AC•BC=24,∴此时S△AQP=12。 由(2)可知,S△AQP=,∴=12,化简得:t2﹣5t+10=0。 ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解, ∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分。 (4)存在。 假设存在时刻t,使四边形AQPQ′为菱形, 则有AQ=PQ=BP=2t。 如图2所示,过P点作PD⊥AC于点D, 则有PD∥BC, ∴△APD∽△ABC。 ∴,即。 解得:PD=,AD=, ∴QD=AD﹣AQ=。 在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即()2+()2=(2t)2, 化简得:13t2﹣90t+125=0,解得:t1=5,t2=。 ∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=。 由(2)可知,S△AQP= ∴S菱形AQPQ′=2S△AQP=2×()=2×[﹣×()2+6×]=。 ∴存在时刻t=,使四边形AQPQ′为菱形,此时菱形的面积为cm2。 (1)由PQ∥BC时的比例线段关系,列一元一次方程求解。 (2)如图1所示,过P点作PD⊥AC于点D,得△APD∽△ABC,由比例线段,求得PD,从而可以得到S的表达式,然后利用二次函数的极值求得S的最大值。 (3)利用(2)中求得的△AQP的面积表达式,再由线段PQ恰好把△ABC的面积平分,列出一元二次方程;由于此一元二次方程的判别式小于0,则可以得出结论:不存在这样的某时刻t,使线段PQ恰好把△ABC的面积平分。 (4)根据菱形的性质及相似三角形比例线段关系,求得PQ、QD和PD的长度;然后在Rt△PQD中,求得时间t的值;最后求菱形的面积,值得注意的是菱形的面积等于△AQP面积的2倍,从而可以利用(2)中△AQP面积的表达式,这样可以化简计算。
复制答案
考点分析:
相关试题推荐

为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费.小兰家4、5月份的用水量及收费情况如下表:

月份

用水量(吨)

水费(元)

4

22

51

5

20

45

(1)求该市每吨水的基本价和市场价.

(2)设每月用水量为n吨,应缴水费为m元,请写出m与n之间的函数关系式.

(3)小兰家6月份的用水量为26吨,则她家要缴水费多少元?

 

查看答案

如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.

6ec8aac122bd4f6e

 

查看答案

如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.

(1)求证:△ABE≌△FCE.

(2)连接AC.BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.

6ec8aac122bd4f6e

 

查看答案

假期,六盘水市教育局组织部分教师分别到A.B.C.D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:

6ec8aac122bd4f6e

(1)若去C地的车票占全部车票的30%,则去C地的车票数量是        张,补全统计图.

(2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?

(3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.

 

查看答案

如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).

(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1,并写出A1的坐标;

(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2.并计算Rt△A1B1C1在上述旋转过程中C1所经过的路程.

6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.