满分5 > 初中数学试题 >

如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的△D...

如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的△DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转。

⑴在图1中,DE交AB于M,DF交BC于N。①说明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;

⑵继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出理由;若不成立,请说明理由;

⑶继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出结论,不用说明理由。

6ec8aac122bd4f6e

 

解:(1)①连接BD,∵AB=BC,∠ABC=90,∴△ABC是等腰直角三角形, ∴∠A=∠C=45 ∵D是AC的中点,∴BD是△ABC的中线,∴BD是△ABC的高, ∴∠BDC=90,∴∠DBC=45=∠DCB,∴BD=CD=AD,∴∠DBC=∠DAB=45, ∵∠EDF=90=∠ADB,∠EDB为公共角,∴∠ADM=∠BDN,∴△ADM≌△BDN(ASA), ∴DM=DN. ②四边形DMBN的面积不发生变化,理由如下: 由①可知S△ADM=S△BDN,∴S四边形DMBN=S△ADB,已知△ADB的面积是一个定值 ∴四边形DMBN的面积不发生变化,∵AB=AC=1,S△ADB=1/2S△ABC, ∴S四边形DMBN=S△ABD=1/2S△ABC=1/4. (2)连接BD,由(1)可知,BD=CD,∵FDE=90,∴∠FDN=90, ∵∠BDC=90,∠FDC是公共角,∴∠BDM=∠CDN,∵∠MBE=∠NDE, ∠BEM=∠NED,∴∠M=∠N,∴△BMD≌△CND(AAS) ∴DM=DN (3)DM=DN 【解析】(1)连结BD,证明△BDM与△CDN全等,得DM=DN  (2)连结BD,同理可证△BDM与△CDN全等,得DM=DN      (3)结论成立 DM=DN
复制答案
考点分析:
相关试题推荐

如图是一个食品包装盒的展开图。(图中六边形的各边长相等)

(1)请写出这个包装盒的多面体形状的名称;                

(2)请根据图中所标的尺寸,计算这个多面体的侧面积(各个侧面的面积之和)

6ec8aac122bd4f6e

 

查看答案

如图, △ABC的三边分别为AC=5,BC=12,AB=13, 将△ABC沿AD折叠,使AC落在AB上.与E点重合。

(1)试判断△ABC的形状,并说明理由.

(2)求折痕AD的长.

 

6ec8aac122bd4f6e

 

 

查看答案

如下图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段;请在图中画出AB=6ec8aac122bd4f6e,CD=,EF=这样的线段.

6ec8aac122bd4f6e

 

查看答案

如图,直线AB∥CD,EF⊥CD于F,如果∠GEF=20°,求∠1的度数.

 

6ec8aac122bd4f6e

 

 

查看答案

如图,直线c、b被直线a所截,则∠1与∠2是(      )

 

6ec8aac122bd4f6e

 

A.同位角       B.内错角       C.同旁内角       D.对顶角

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.