如图,将证明三角形全等的理由用字母表示填写在后面的括号内。
①若AB=DC,AC=DB,则△ABC≌△DCB的道理是( ).
②若∠A=∠D,∠ABC=∠DCB,则△ABC≌△DCB的道理是( ).
③若∠1=∠2,∠3=∠4,则△ABC≌△DCB的道理是( ).
④若∠A=∠D=900,AC=DB,则△ABC≌△DCB的道理是( ).
阅读填空题
已知:如图,DC⊥CA,EA⊥CA,DB⊥EB,DB=BE,求证:△BCD与△EAB全等.
证明:∵DC⊥CA,EA⊥CA,DB⊥EB (已知)
∴∠C=∠A=∠DBE=90( )
∵∠DBC+∠EBA+∠DBE=180°
∴∠DBC+∠EBA=90°
又∵在直角△BCD中,∠DBC+∠D=90°( )
∴∠D=∠EBA ( )
在△BCD与△EAB中,
∠D=∠EBA(已证)
∠C= (已证)
DB= (已知)
∴△BCD≌△EAB( )
已知,求的值。
先化简后求值。
已知,,求代数式的值。
化简:
化简: