图1是一个长为2,宽为2的长方形,沿图中虚线剪开,可分成四块小长方形.
(1)求出图1的长方形面积;
(2)将四块小长方形拼成一个图2的正方形.利用阴影部分面积的不同表示方法,直接写出代数式()2、()2、之间的等量关系;
(3)把四块小长方形不重叠地放在一个长方形的内部(如图3),未被覆盖的部分用
阴影表示.求两块阴影部分的周长和(用含、的代数式表示).
如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.小明认为蚂蚁能够最快到达目的地的路径AC1,小王认为蚂蚁能够最快到达目的地的路径AC1′.已知AB=4,BC=4,CC1=5时,请你帮忙他们求出蚂蚁爬过的最短路径的长.
请举例说明:
① 存在两个不同的无理数, 它们的积是整数;
② 存在两个不同的无理数, 它们的差是有理数;
③ 存在两个不同的无理数, 它们的商是无理数.
地球的质量约为5.98×10千克,木星的质量约为1.9×10千克.问木星的质量约是地球的多少倍?(结果保留三个有效数字)
已知M=32-2-42,N=42+5-2,求3M-2N的值.
先化简,再求值:
(2+1)2-(2+1)(2-1),其中=-2