已知,如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别为A(8,0),B(8,10),C(0,4),
点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为秒.
(1)求直线BC的解析式;
(2)若动点P在线段OA上移动,当为何值时,四边形OPDC的面积是梯形COAB面积的?
(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与 的函数关系式,并写出自变量的取值范围。
阅读下列材料,并解决后面的问题.
材料:一般地,n个相同的因数相乘:记为。如23=8,此时,3叫做以2为底8的对数,记为。
一般地,若,则n叫做以为底b的对数,记为,则4叫做以3为底81的对数,记为。
问题:
(1)计算以下各对数的值:
(2)观察(1)中三数4、16、64之间满足怎样的关系式? 之间又满足怎样的关系式?
(3)由(2)的结果,你能归纳出一个一般性的结论吗?
(4)根据幂的运算法则:以及对数的含义证明上述结论。
证明:
某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
(2)若甲工程队独做a天后,再由甲、乙两工程队合作 天(用含a的代数式表示)可完成此项工程;
(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?
如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点.
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系并证明你的结论.
如图,一次函数与反比例函数在第一象限的图象交于点B,且点B的横坐标为1,过点B作轴的垂线,C为垂足,若,求一次函数和反比例函数的解析式.
为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭2010年每个月的用水量,统计得到的数据绘制了下面的两幅统计图,图1是2010年这50户家庭月总用水量的折线统计图,图2是2010年这50户家庭月总用水量的不完整的频数分布直方图.
(1)根据图1提供的信息,补全图2中的频数分布直方图;
(2)在抽查的50户家庭2010年月总用水量这12个数据中,极差是 米3,众数是 米3,中位数是 米3;
(3)请你根据上述提供的数据,计算该住宅区2010年3月份到5月份的月总用水量的平均增长率?
(结果保留1%)(参考数据:, ,)