如图,AB是⊙O的直径,点P是⊙O上的动点(P与A,B不重合),连结AP,PB,过点O分别作OE⊥AP于E,OF⊥BP于F.
(1)若AB=12,当点P在⊙O上运动时,线段EF的长会不会改变.若会改变,请说明理由;若不会改变,请求出EF的长;
(2)若AP=BP,求证四边形OEPF是正方形.
(1)在半径为10的圆的铁片中,要裁剪出一个直角扇形,求能裁剪出的最大的直角扇形的面积?(2)若用这个最大的直角扇形恰好围成一个圆锥,求这个圆锥的底面圆的半径? (3)能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由.
如图,小明晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,从C处继续往前走2米到达E处时,测得影子EF的长为2米,B、C、D、E、F在同一条直线上,已知小明的身高是1.6米,求路灯A的高度?
如图,已知点A(-4,2)、B( n,-4)是一次函数的图象与反比例函数图象的两个交点.
(1) 求此一次函数的解析式和点B的坐标;
(2) 根据图象写出使一次函数的值小于反比例函数值的x的取值范围.
(1)如图,用直尺和圆规作出△ABC的外接圆⊙O (不写作法,保留作图痕迹)
(2)若∠ABC=110°,求∠AOC的度数。
如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是_______________。