如图,在平面直角坐标系中,四边形OABC是矩形,OA = 6,AB = 4,直线y = - x +3与坐标轴交于D、E。设M是AB的中点,P是线段DE上的动点.
(1)求M、D两点的坐标;
(2)当P在什么位置时,PA = PB?求出此时P点的坐标;
(3)过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,求梯形PMBH的面积.
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A′B′C.
(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;
(2)如图(2),设AC中点为E,A′B′中点为P,AC=,连接EP, 当= °时,EP长度最大,最大值为 .
如图所示,在RtABC中,∠C=90°,∠BAC=60°,AB=8.半径为的⊙M与射线BA相切,切点为N,且AN=3.将RtABC绕A点顺时针旋转120°后得到RtADE,点B、C的对应点分别是点D、E.
(1)画出旋转后的RtADE,求出RtADE 的直角边DE被⊙M截得的弦PQ的长度;
(2)判断RtADE的斜边AD所在的直线与⊙M的位置关系(直接写出答案)
如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.
(1)求证:是的切线;
(2)若的半径为2,求图中阴影部分的面积.
元旦送贺卡,一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这小组有多少人?
先化简,再求值:,其中