满分5 > 初中数学试题 >

如图,在平面直角坐标系中,点0为坐标原点,直线y=2x+4交x轴于点A,交y轴于...

如图,在平面直角坐标系中,点0为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=-x+m经过点C,交x轴于点D.

(1)求m的值;

(2)点P(0,t)是线段OB上的一个动点(点P不与0,B两点重合),过点P作x轴的平行线,分别交AB,0c,DC于点E,F,G.设线段EG的长为d,求d与t之间的函数关系式 (直接写出自变量t的取值范围); (3)在(2)的条件下,点H是线段OB上一点,连接BG交OC于点M,当以OG为直径的圆经过点M时,恰好使∠BFH=∠ABO.求此时t的值及点H的坐标.

6ec8aac122bd4f6e

 

(1)m=6(2)d=-t+8(0<t<4)(3)t=2,H(0,) 【解析】【解析】 (1)如图,过点C作CK⊥x轴于K, ∵y=2x+4交x轴和y轴于A,B, ∴A(-2,0)B(0,4)。∴OA=2,OB=4。 ∵四边形ABCO是平行四边形,∴BC=OA=2 。 又∵四边形BOKC是矩形, ∴OK=BC=2,CK=OB=4。∴C(2,4)。 将C(2,4)代入y=-x+m得,4=-2+m,解得m=6。 (2)如图,延长DC交y轴于N,分别过点E,G作x轴的垂线 垂足分别是R,Q, 则四边形ERQG、四边形POQG、四边形EROP是矩形。 ∴ER=PO=CQ=1。 ∵,即,∴AR=t。 ∵y=-x+6交x轴和y轴于D,N,∴OD=ON=6。 ∴∠ODN=45°。 ∵,∴DQ=t。 又∵AD=AO+OD=2+6=8,∴EG=RQ=8-t-t=8-t。 ∴d=-t+8(0<t<4)。 (3)如图, ∵四边形ABCO是平行四边形, ∴AB∥OC。∴∠ABO=∠BOC。 ∵BP=4-t, ∴。 ∴EP=。 由(2)d=-t+8,∴PG=d-EP=6-t。 ∵以OG为直径的圆经过点M,∴∠OMG=90°,∠MFG=∠PFO。∴∠BGP=∠BOC。 ∴。∴,解得t=2。 ∵∠BFH=∠ABO=∠BOC,∠OBF=∠FBH,∴△BHF∽△BFO。 ∴,即BF2=BH•BO。 ∵OP=2,∴PF=1,BP=2。∴。 ∴=BH×4。∴BH=。∴HO=4-。 ∴H(0,)。 (1)根据直线y=2x+4求出点A、B的坐标,从而得到OA、OB的长度,再根据平行四边形的对边相等求出BC的长度,过点C作CK⊥x轴于K,从而得到四边形BOKC是矩形,根据矩形的对边相等求出KC的长度,从而得到点C的坐标,然后把点C的坐标代入直线即可求出m的值。 (2)延长DC交y轴于N分别过点E,G作x轴的垂线 垂足分别是R,Q则四边形ERQG、四边形POQG、四边形EROP是矩形,再利用∠BAO的正切值求出AR的长度,利用∠ODN的正切值求出DQ的长度,再利用AD的长度减去AR的长度,再减去DQ的长度,计算即可得解。 (3)根据平行四边形的对边平行可得AB∥OC,再根据平行线内错角相等求出∠ABO=∠BOC,用t表示出BP,再根据∠ABO与∠BOC的正切值相等列式求出EP的长度,再表示出PG的长度,然后根据直径所对的圆周角是直角可得∠OMC=90°,根据直角推出∠BGP=∠BOC,再利用∠BGP与∠BOC的正切值相等列式求解即可得到t的值;先根据加的关系求出∠OBF=∠FBH,再判定△BHF和△BFO相似,根据相似三角形对应边成比例可得,再根据t=2求出OP=2,PF=1,BP=2,利用勾股定理求出BF的长度,代入数据进行计算即可求出BH的值,然后求出HO的值,从而得到点H的坐标。
复制答案
考点分析:
相关试题推荐

同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买2个足球和5个篮球共需500元.

(1)购买一个足球、一个篮球各需多少元?

(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个.要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?

 

查看答案

虹承中学为做好学生“午餐工程”工作,学校工作人员搭配了A,B,C,D四种不同种类的套餐,学校决定围绕“在A,B,C,D四种套餐中,你最喜欢的套餐种类是什么?

(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查问适当整理后绘制成如图所示的不完整的条形统计图,其中最喜欢D种套餐的学生占被抽取人数的20%.

请你根据以上信息解答下列问题:

(1)在这次调查中,一共抽取了多少名学生?

(2)通过计算,补全条形统计图;

(3)如果全校有2 000名学生.请你估计全校学生中最喜欢B种套餐的学生有多少名?

6ec8aac122bd4f6e

 

查看答案

小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.

(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);

(2)当x是多少时,这个三角形面积S最大?最大面积是多少?

6ec8aac122bd4f6e

 

查看答案

如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.

求证:AC=AD.

6ec8aac122bd4f6e

 

查看答案

图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.

(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个 即可);

(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);

6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.