满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,A...

如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=126ec8aac122bd4f6e,点C的坐标为(-18,0)。

6ec8aac122bd4f6e

(1)求点B的坐标;

(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;

(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由。

 

(1)(-6,12)(2)y=-x+4(3)结论:存在。点Q的坐标为:(2 ,-2 ),(-2 ,2 ),(4,4),(-2,2) 【解析】【解析】 (1)过点B作BF⊥x轴于F, 在Rt△BCF中 ∵∠BCO=45°,BC=12,∴CF=BF=12 。   ∵C 的坐标为(-18,0),∴AB=OF=6。 ∴点B的坐标为(-6,12)。 (2)过点D作DG⊥y轴于点G, ∵OD=2BD,∴OD=OB。 ∵AB∥DG,∴△ODG∽△OBA 。      ∵,AB=6,OA=12,∴DG=4,OG=8。∴D(-4,8),E(0,4)。 设直线DE解析式为y=kx+b(k≠0) ∴ ,解得。∴直线DE解析式为y=-x+4。 (3)结论:存在。 点Q的坐标为:(2 ,-2 ),(-2 ,2 ),(4,4),(-2,2)。 (1)构造等腰直角三角形BCF,求出BF、CF的长度,即可求出B点坐标。 (2)已知E点坐标,欲求直线DE的解析式,需要求出D点的坐标.构造△ODG∽△OBA,由线段比例关系求出D点坐标,从而可以求出直线DE的解析式。 (3)如图所示,符合题意的点Q有4个: 设直线y=-x+4分别与x轴、y轴交于点E、点F, 则E(0,4),F(4,0),OE=OF=4,EF=4。 ①菱形OEP1Q1,此时OE为菱形一边。 则有P1E=P1Q1=OE=4,P1F=EF-P1E=4-4。 易知△P1NF为等腰直角三角形, ∴P1N=NF=P1F=4-2。 设P1Q1交x轴于点N,则NQ1=P1Q1-P1N=4-(4-2)=2。 又ON=OF-NF=2,∴Q1(2 ,-2)。 ②菱形OEP2Q2,此时OE为菱形一边。此时Q2与Q1关于原点对称,∴Q2(-2,2)。 ③菱形OEQ3P3,此时OE为菱形一边。 此时P3与点F重合,菱形OEQ3P3为正方形,∴Q3(4,4)。 ④菱形OP4EQ4,此时OE为菱形对角线。 由菱形性质可知,P4Q4为OE的垂直平分线, 由OE=4,得P4纵坐标为2,代入直线解析式y=-x+4得横坐标为2,则P4(2,2)。 由菱形性质可知,P4、Q4关于OE或x轴对称,∴Q4(-2,2)。 综上所述,存在点Q,使以O、E、P、Q为顶点的四边形是菱形,点Q的坐标为: Q1(2,-2),Q2(-2,2),Q3(4,4),Q4(-2,2)。
复制答案
考点分析:
相关试题推荐

国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区。现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资。已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:

 

         运往地

车 型

甲 地(元/辆)

乙 地(元/辆)

大货车

720

800

小货车

500

650

 

(1)求这两种货车各用多少辆?

(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);

(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。

 

查看答案

在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF。

(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);

(2)若E是线段AC或AC延长线上的任意一点,其它条件不变, 如图2、图3,线段BE、EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明。

6ec8aac122bd4f6e

 

查看答案

甲、乙两个港口相距72千米,一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即返回;一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,并立即返回(掉头时间忽略不计)。已知水流速度是2千米/时,下图表示轮船和快艇距甲港的距离y(千米)与轮船出发时间x(小时)之间的函数关系式,结合图象解答下列问题:

(顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度)

6ec8aac122bd4f6e

(1)轮船在静水中的速度是           千米/时;快艇在静水中的速度是           千米/时;

(2)求快艇返回时的解析式,写出自变量取值范围;

(3)快艇出发多长时间,轮船和快艇在返回途中相距12千米?(直接写出结果)

 

查看答案

最美女教师张丽莉在危急关头为挽救两个学生的生命而失去双腿,她的病情牵动了全国人民的心,全社会积极为丽莉老师献爱心捐款。为了解某学校的捐款情况,对学校捐款学生进行了抽样调查,把调查结果制成了下面两个统计图,在条形图中,从左到右依次为A组、B组、C组、D组、E组,A组和B组的人数比是5:7。捐款钱数均为整数,请结合图中数据回答下列问题:

6ec8aac122bd4f6e

(1)B组的人数是多少?本次调查的样本容量是多少?

(2)补全条形图中的空缺部分,并指出中位数落在哪一组?

(3)若该校3000名学生都参加了捐款活动,估计捐款钱数不少于26元的学生有多少人?

 

查看答案

如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0)。

(1)求此抛物线的解析式;

(2)写出顶点坐标及对称轴;

(3)若抛物线上有一点B,且6ec8aac122bd4f6e,求点B的坐标。

6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.